Home
Class 12
MATHS
underset(n to oo)lim underset(r=1)overs...

`underset(n to oo)lim underset(r=1)overset(n)sum(1)/(n)e^(r//n)` is

A

e

B

`e-1`

C

`1-e`

D

`e+1`

Text Solution

Verified by Experts

The correct Answer is:
B

`lim_(pitoinfty)sum_(r=1)^(n)(1)/(n)e^(r//n)=int_(0)^(1)e^(x)dx=[e^(x)]_(0)^(1)=e-1`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

The value of underset( n rarroo)(lim) underset(r=1)overset(r=4n)(sum)(sqrt(n))/(sqrt(r ) (3 sqrt(r)+4)sqrt(n)^(2)) is equal to

underset(r=1)overset(n)sum ( r )/(r^(4)+r^(2)+1) is equal to

Use Sandwich theorem to evaluate : underset( n rarr oo) ( "Lim") underset(k=n^(2))overset((n+1)^(2))sum (1)/( sqrt( k ))

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

If k=underset(r=0)overset(n)(sum)(1)/(.^(n)C_(r)) , then underset(r=0)overset(n)(sum)(r)/(.^(n)C_(r)) is equal to

The limit of the series underset(r=1)overset(n)sum (r)/(1+r^(2)+r^(4)) as n approaches infinity, is

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)
  1. If 2f(x) - 3 f(1//x) = x," then " int(1)^(2) f(x) dx is equal to

    Text Solution

    |

  2. int (0)^(2pi) sin^(6) x cos^(5) x dx is equal to

    Text Solution

    |

  3. int (-3pi//2)^(-pi//2) [ ( x + pi)^(3) + cos^(2) x ] dx is equalt to

    Text Solution

    |

  4. int (0)^(3) (3x+1)/(x^(2)+9) dx =

    Text Solution

    |

  5. underset(n to oo)lim underset(r=1)overset(n)sum(1)/(n)e^(r//n) is

    Text Solution

    |

  6. int (-1//2)^(1//2) cos x log ((1+x)/(1-x)) dx = k log 2 , then k equ...

    Text Solution

    |

  7. The value of the integral int (0)^(pi//2) sin ^(5) x dx is

    Text Solution

    |

  8. If int (0)^(x^(2)) f(t) dt = x cos pix , then the value of f(4) is

    Text Solution

    |

  9. If f(x) is differentiable and int0^(t^2)xf(x)dx=2/5t^5, then f(4/(25))...

    Text Solution

    |

  10. The value of int (0)^(pi//2) sin ^(8) x dx is

    Text Solution

    |

  11. The value of overset(pi)underset(-pi)int(1-x^(2)) sin x cos^(2) x" dx"...

    Text Solution

    |

  12. int (0)^(1) (xdx)/([x + sqrt(1-x^(2))]sqrt(1-x^(2))) is equal to

    Text Solution

    |

  13. The value of int(0)^(pi)(Sigma(r=0)^(3)a(r)cos^(3-r)x sin^(r)x)dx depe...

    Text Solution

    |

  14. The value of int (-1)^(1) x|x| dx is

    Text Solution

    |

  15. The value of integral int (1//pi)^(2//pi)(sin(1/x))/(x^(2))dx=

    Text Solution

    |

  16. The value of int (1)^(e^(2)) (dx)/(x(1+ log x)^(2) ) is

    Text Solution

    |

  17. int(pi//3)^(pi//2) (sqrt(1+cosx))/((1-cosx)^(5//2)) dx

    Text Solution

    |

  18. The value of the integral overset(1)underset(0)int x(1-x)^(n)dx, is

    Text Solution

    |

  19. The value of int (0)^(pi) (dx)/(5+4 cos x ) is

    Text Solution

    |

  20. The integral int (0)^(1) (dx)/(1-x+x^(2)) has the value

    Text Solution

    |