Home
Class 12
MATHS
If int (0)^(x^(2)) f(t) dt = x cos pix ...

If ` int _(0)^(x^(2)) f(t) dt = x cos pix` , then the value of f(4) is

A

1

B

`1/4`

C

`-1`

D

`(-1)/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(4) \) given that \[ \int_{0}^{x^2} f(t) \, dt = x \cos(\pi x). \] ### Step 1: Differentiate both sides with respect to \( x \) Using the Fundamental Theorem of Calculus and the chain rule, we differentiate the left-hand side: \[ \frac{d}{dx} \left( \int_{0}^{x^2} f(t) \, dt \right) = f(x^2) \cdot \frac{d}{dx}(x^2) = f(x^2) \cdot 2x. \] Now, we differentiate the right-hand side: \[ \frac{d}{dx}(x \cos(\pi x)) = \cos(\pi x) + x \cdot \frac{d}{dx}(\cos(\pi x)). \] Using the chain rule, we find: \[ \frac{d}{dx}(\cos(\pi x)) = -\pi \sin(\pi x). \] Thus, the differentiation of the right-hand side becomes: \[ \cos(\pi x) - \pi x \sin(\pi x). \] ### Step 2: Set the derivatives equal to each other Now we set the derivatives from both sides equal to each other: \[ f(x^2) \cdot 2x = \cos(\pi x) - \pi x \sin(\pi x). \] ### Step 3: Solve for \( f(x^2) \) To isolate \( f(x^2) \), we divide both sides by \( 2x \): \[ f(x^2) = \frac{\cos(\pi x) - \pi x \sin(\pi x)}{2x}. \] ### Step 4: Find \( f(4) \) To find \( f(4) \), we need to set \( x^2 = 4 \) which gives \( x = 2 \): \[ f(4) = \frac{\cos(2\pi) - \pi \cdot 2 \sin(2\pi)}{2 \cdot 2}. \] ### Step 5: Evaluate \( \cos(2\pi) \) and \( \sin(2\pi) \) We know: \[ \cos(2\pi) = 1 \quad \text{and} \quad \sin(2\pi) = 0. \] ### Step 6: Substitute these values into the equation Substituting these values into our expression for \( f(4) \): \[ f(4) = \frac{1 - \pi \cdot 2 \cdot 0}{4} = \frac{1}{4}. \] ### Final Answer Thus, the value of \( f(4) \) is \[ \boxed{\frac{1}{4}}. \]

To solve the problem, we need to find the value of \( f(4) \) given that \[ \int_{0}^{x^2} f(t) \, dt = x \cos(\pi x). \] ### Step 1: Differentiate both sides with respect to \( x \) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of 25f(2) must be_________.

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

int_(0)^(x)f(t)dt=x cos pi x then f(3)=

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

If f:R in R is continuous and differentiable function such that int_(-1)^(x) f(t)dt+f'''(3) int_(x)^(1) dt=int_(1)^(x) t^(3)dt-f'(1)int_(0)^(x) t^(2)dt+f'(2) int_(x)^(3) r dt , then the value of f'(4), is

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If int_(0)^(f(x))t^(2)dt=x cos nx,f(9)=

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)
  1. If 2f(x) - 3 f(1//x) = x," then " int(1)^(2) f(x) dx is equal to

    Text Solution

    |

  2. int (0)^(2pi) sin^(6) x cos^(5) x dx is equal to

    Text Solution

    |

  3. int (-3pi//2)^(-pi//2) [ ( x + pi)^(3) + cos^(2) x ] dx is equalt to

    Text Solution

    |

  4. int (0)^(3) (3x+1)/(x^(2)+9) dx =

    Text Solution

    |

  5. underset(n to oo)lim underset(r=1)overset(n)sum(1)/(n)e^(r//n) is

    Text Solution

    |

  6. int (-1//2)^(1//2) cos x log ((1+x)/(1-x)) dx = k log 2 , then k equ...

    Text Solution

    |

  7. The value of the integral int (0)^(pi//2) sin ^(5) x dx is

    Text Solution

    |

  8. If int (0)^(x^(2)) f(t) dt = x cos pix , then the value of f(4) is

    Text Solution

    |

  9. If f(x) is differentiable and int0^(t^2)xf(x)dx=2/5t^5, then f(4/(25))...

    Text Solution

    |

  10. The value of int (0)^(pi//2) sin ^(8) x dx is

    Text Solution

    |

  11. The value of overset(pi)underset(-pi)int(1-x^(2)) sin x cos^(2) x" dx"...

    Text Solution

    |

  12. int (0)^(1) (xdx)/([x + sqrt(1-x^(2))]sqrt(1-x^(2))) is equal to

    Text Solution

    |

  13. The value of int(0)^(pi)(Sigma(r=0)^(3)a(r)cos^(3-r)x sin^(r)x)dx depe...

    Text Solution

    |

  14. The value of int (-1)^(1) x|x| dx is

    Text Solution

    |

  15. The value of integral int (1//pi)^(2//pi)(sin(1/x))/(x^(2))dx=

    Text Solution

    |

  16. The value of int (1)^(e^(2)) (dx)/(x(1+ log x)^(2) ) is

    Text Solution

    |

  17. int(pi//3)^(pi//2) (sqrt(1+cosx))/((1-cosx)^(5//2)) dx

    Text Solution

    |

  18. The value of the integral overset(1)underset(0)int x(1-x)^(n)dx, is

    Text Solution

    |

  19. The value of int (0)^(pi) (dx)/(5+4 cos x ) is

    Text Solution

    |

  20. The integral int (0)^(1) (dx)/(1-x+x^(2)) has the value

    Text Solution

    |