Home
Class 11
MATHS
If the line lx+my+n=0 touches the hyperb...

If the line `lx+my+n=0` touches the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`. Then

Promotional Banner

Similar Questions

Explore conceptually related problems

If the straight line lx+my+n=0 touches the : hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , show that a^(2) l^(2)-b^(2)m^(2)=n^(2) .

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then

The pole of the line lx+my+n=0 with respect to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , is

The pole of the line lx+my+n=0 with respect to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , is

If the line lx+my+n=0 s a tangent to the hyperboal (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , then show that a^(2)l^(2)-b^(2)m^(2)=n^(2)

If the straight line lx+my=n is a normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 show that (a^(2))/(l^(2))-(b^(2))/(m^(2))=((a^(2)+b^(2))^(2))/(n^(2)) .

Find the condition that the straight line lx+my=n touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1

If lx+ my = 1 is a normal to the hyperbola (x^(2))/(a^(2)) - (y^(2))/(b^(2)) = 1, "then" a^(2) m^(2) - b^(2) l^(2) =