Home
Class 12
MATHS
Find the value of tan^(-1)(x/y)-tan^(-1)...

Find the value of `tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is

Express the value of "tan"^(-1)(x/y)-"tan"^(-1)((x-y))/((x+y) in simplest form.

Simplify the following: Evaluate tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

If x<0,\ y<0 such that x y=1 , then write the value of tan^(-1)x+tan^(-1)y .

If x<0,\ y<0 such that x y=1 , then write the value of tan^(-1)x+tan^(-1)y .

If x+y=4, xy=1 then what is the value of tan^(-1)x+tan^(-1)y ?

Find the value of: tan^-1(frac{x}{y})-tan^-1(frac{x-y}{x+y})

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z