Home
Class 12
PHYSICS
An object is placed in front of a convex...

An object is placed in front of a convex mirror at a distance of 50cm. A plane mirror is introduced covering the lower half of the convex mirror. If the distance between the object and the plane mirror is 30cm, it is found that there is no parallax between the images formed by the two mirrors. What is the radius of curvature of the convex mirror?

A

25cm

B

7cm

C

18cm

D

27cm

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the information given in the question and the principles of optics. ### Step 1: Understand the setup We have an object placed in front of a convex mirror at a distance of 50 cm. A plane mirror is placed such that it covers the lower half of the convex mirror, and the distance from the object to the plane mirror is 30 cm. ### Step 2: Determine the position of the plane mirror Since the object is 50 cm from the convex mirror and the distance from the object to the plane mirror is 30 cm, we can find the distance from the convex mirror to the plane mirror: - Distance from the convex mirror to the plane mirror = Distance from the object to the convex mirror - Distance from the object to the plane mirror - Distance from the convex mirror to the plane mirror = 50 cm - 30 cm = 20 cm ### Step 3: Find the image formed by the plane mirror A plane mirror forms an image at the same distance behind the mirror as the object is in front of it. Therefore, the image formed by the plane mirror will be: - Image distance (V_plane) = - Distance from the plane mirror to the object = -30 cm (the negative sign indicates that the image is virtual and located behind the mirror). ### Step 4: Find the image formed by the convex mirror The image formed by the convex mirror can be calculated using the mirror formula: \[ \frac{1}{f} = \frac{1}{v} + \frac{1}{u} \] where: - \( u = -50 \) cm (object distance for the convex mirror, negative as per sign convention), - \( v \) is the image distance for the convex mirror (which we need to find), - \( f \) is the focal length of the convex mirror. ### Step 5: Establish the condition of no parallax Since there is no parallax between the images formed by the two mirrors, the image distance from the convex mirror must equal the distance of the image formed by the plane mirror: - Therefore, \( v = -10 \) cm (the image distance from the convex mirror). ### Step 6: Substitute values into the mirror formula Now we can substitute the known values into the mirror formula: \[ \frac{1}{f} = \frac{1}{-10} + \frac{1}{-50} \] Calculating the right-hand side: \[ \frac{1}{f} = -\frac{1}{10} - \frac{1}{50} \] Finding a common denominator (which is 50): \[ \frac{1}{f} = -\frac{5}{50} - \frac{1}{50} = -\frac{6}{50} = -\frac{3}{25} \] Thus, \[ f = -\frac{25}{3} \text{ cm} \approx -8.33 \text{ cm} \] ### Step 7: Calculate the radius of curvature The radius of curvature \( R \) is related to the focal length \( f \) by the formula: \[ R = 2f \] Substituting the value of \( f \): \[ R = 2 \times -\frac{25}{3} = -\frac{50}{3} \text{ cm} \approx -16.67 \text{ cm} \] Since the radius of curvature is taken as a positive quantity, we can state: \[ R = \frac{50}{3} \text{ cm} \approx 16.67 \text{ cm} \] ### Final Answer: The radius of curvature of the convex mirror is approximately \( 16.67 \) cm.

To solve the problem step by step, we will follow the information given in the question and the principles of optics. ### Step 1: Understand the setup We have an object placed in front of a convex mirror at a distance of 50 cm. A plane mirror is placed such that it covers the lower half of the convex mirror, and the distance from the object to the plane mirror is 30 cm. ### Step 2: Determine the position of the plane mirror Since the object is 50 cm from the convex mirror and the distance from the object to the plane mirror is 30 cm, we can find the distance from the convex mirror to the plane mirror: - Distance from the convex mirror to the plane mirror = Distance from the object to the convex mirror - Distance from the object to the plane mirror ...
Promotional Banner

Topper's Solved these Questions

  • GEOMETRICAL OPTICS

    CENGAGE PHYSICS|Exercise Assertion-Reasoninig|2 Videos
  • GEOMETRICAL OPTICS

    CENGAGE PHYSICS|Exercise Linked Comprehension|51 Videos
  • GEOMETRICAL OPTICS

    CENGAGE PHYSICS|Exercise Subjective|26 Videos
  • FRICTION

    CENGAGE PHYSICS|Exercise QUESTION BANK|1 Videos
  • GRAVITATION

    CENGAGE PHYSICS|Exercise Question Bank|39 Videos

Similar Questions

Explore conceptually related problems

An object is placed in front of a convex mirror at a distance of 50cm A p[lane mirror is introduced covering the lower half of the convex mirror.If the distance between the images formed by the two mirrors .The radius of the convex is :

An object of height 0.5 m is placed in front of convex mirror. Distance of object from the mirror is equal to the focal length of the mirror. Height of the image of the object is

An object is placed in front of a convex mirror of a radius of curvature 20 cm. Its image is formed 8 cm behind the mirror. The object distance is

An object is placed on the principal axis of a convex mirror of focal length 15 cm. If the distance of the object from the mirror is 30 cm, where should a plane mirror be placed such that the images produced by the two mirrors coincide?

CENGAGE PHYSICS-GEOMETRICAL OPTICS-Single Correct
  1. An object is placed 1m in front of the curved surface of a plano-conve...

    Text Solution

    |

  2. The apparent thickness of a thick plano-convex lens is measured once w...

    Text Solution

    |

  3. An object is placed in front of a convex mirror at a distance of 50cm....

    Text Solution

    |

  4. A concave mirror of focal length 10cm and a convex mirror of focal len...

    Text Solution

    |

  5. A U-shaped wire is placed before a concave mirror having radius of cur...

    Text Solution

    |

  6. An object ABED is placed in front of a concave mirror beyond the cente...

    Text Solution

    |

  7. A gun of mass M fires a bullet of mass m with a horizontal speed V. Th...

    Text Solution

    |

  8. The distance between two point sources of light is 24cm. Find out wher...

    Text Solution

    |

  9. Two thin sysmmetrical lenses of different nature and of different mate...

    Text Solution

    |

  10. A glass sphere of radius R=10cm is kept inside water. A point object ...

    Text Solution

    |

  11. A spherical convex surface separates object and image spaces of refrac...

    Text Solution

    |

  12. A tranparent sphere of radius 20cm and refractive index 1.6 is fixed i...

    Text Solution

    |

  13. A cubical block of glass, refractive index 1.5, has a spherical cavity...

    Text Solution

    |

  14. A glass sphere, refractive index 1.5 and radius 10cm, has a spherical ...

    Text Solution

    |

  15. A luminous object and a screen are at a fixed distance D apart. A conv...

    Text Solution

    |

  16. For the same statement as above, the ration of the two image sizes for...

    Text Solution

    |

  17. For statement of question 118, if the heights of the two images are h(...

    Text Solution

    |

  18. The focal length of the lens used in question 118 is

    Text Solution

    |

  19. In question 118, if m(1) and m(2) are the magnifications for two posit...

    Text Solution

    |

  20. Figure, shows a concavo-convex lens mu(2). What is the condition on th...

    Text Solution

    |