Home
Class 12
PHYSICS
A particle of mass 2kg moves under a for...

A particle of mass `2kg` moves under a force given by
`vec(F)=-(8N//m)(xhat(i)+yhat(j))`
where `hat(i)` and `hat(j)` are unit vectors in the `x` and `y` directions.
The particle is projected from the origin in `xy` plane with an initial velocity `vec(v)=(3m//s)hat(i)+(4m//s)hat(j)`.
Select correct statement(s).

Promotional Banner

Similar Questions

Explore conceptually related problems

A particle of mass 2kg moves under a force given by vec(F)=-(8N//m)(xhat(i)+yhat(j)) where hat(i) and hat(j) are unit vectors in the x and y directions. The particle is projected from a point on x axis at x=a in xy plane with an initial velocity vec(v)=v_(0)hat(j) . Select correct statement (s). The particle will move in

A particle of mass 2kg moves under a force given by vec(F)=-(8N//m)(xhat(i)+yhat(j)) where hat(i) and hat(j) are unit vectors in the x and y directions. The particle is projected from a point on x axis at x=a in xy plane with an initial velocity vec(v)=v_(0)hat(j) . Select correct statement (s). The particle will move in

A particle is moving in a plane with velocity given by vec(u)=u_(0)hat(i)+(aomega cos omegat)hat(j) , where hat(i) and hat(j) are unit vectors along x and y axes respectively. If particle is at the origin at t=0 . Calculate the trajectory of the particle :-

A particle is moving in a plane with velocity given by vec(u)=u_(0)hat(i)+(aomega cos omegat)hat(j) , where hat(i) and hat(j) are unit vectors along x and y axes respectively. If particle is at the origin at t=0 . Calculate the trajectory of the particle :-

A particle is moving in a plane with velocity given by vec(u)=u_(0)hat(i)+(aomega cos omegat)hat(j) , where hat(i) and hat(j) are unit vectors along x and y axes respectively. If particle is at the origin at t=0 . Calculate the trajectory of the particle :-

A particle of mass 2kg moves with an initial velocity of (4hat(i)+2hat(j))ms^(-1) on the x-y plane. A force vec(F)=(2hat(i)-8hat(j))N acts on the particle. The initial position of the particle is (2m,3m). Then for y=3m ,

A particle of mass 2 kg moves in the xy plane under the action of a constant force vec(F) where vec(F)=hat(i)-hat(j) . Initially the velocity of the particle is 2hat(j) . The velocity of the particle at time t is

A particle of mass 2 kg moves in the xy plane under the action of a constant force vec(F) where vec(F)=hat(i)-hat(j) . Initially the velocity of the particle is 2hat(j) . The velocity of the particle at time t is

A particle has initial velocity vec(v)=3hat(i)+4hat(j) and a constant force vec(F)=4hat(i)-3hat(j) acts on the particle. The path of the particle is :

A particle of mass m moves in the xy-plane with velocity of vec v = v_x hat i+ v_y hat j . When its position vector is vec r = x vec i + y vec j , the angular momentum of the particle about the origin is.