Home
Class 11
MATHS
lim(x->oo)(x^4sin(1/x)+x^3)/(1+|x|^3)...

`lim_(x->oo)(x^4sin(1/x)+x^3)/(1+|x|^3)`

Text Solution

Verified by Experts

`x>0 , |x| = x`
`(x^4 sin(1/x) + x^3)/(1 + x^3)`
`= (x^3{xsin(1/x) + 1})/(1+x^3)`
`= (sin(1/x)/(1/x) + 1)/(1 + (1/x)^3)`
`lim_(x->oo) (sin(1/x)/(1/x) + 1)/(1+(1/x)^3)`
`lim_(y->0) {((siny)/y +1)/(1+y^3)}`
`= (1+1)/(1+0)`
`=2`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo)sin(1/x)/(1/x)

lim_(x->o)[(x^4sin(1/x)+x^2)/(1+|x|^3)]=______

lim_(x rarr oo)x sin(1/x)=

The value of lim_(xrarr oo) {(x^4sin((1)/(x))+x^2)/(1+|x^3|)} is

Evaluate lim_(xto-oo)[(x^(4)sin((1)/(x))+x^(2))/((1+|x|^(3)))].

(lim)_(x->oo)(sin(1/x)+cos(1/x))^x

The value of lim_(x rarr-oo)(x^(4)sin((1)/(x))+x^(2))/(1+|x^(3)|)

If lim_(xto-oo)((3x^(4)+2x^(2)).sin(1/x)+|x|^(3)+5)/(|x|^(3)+|x^(2)|+|x|+1)=k then |k/2| is …….

If lim_(xto-oo)((3x^(4)+2x^(2)).sin(1/x)+|x|^(3)+5)/(|x|^(3)+|x^(2)|+|x|+1)=k then |k/2| is …….