Home
Class 11
MATHS
If a, b, c are complex numbers, then the...

If a, b, c are complex numbers, then the determinant
`Delta = |(0,-b,-c),(bar(b),0,-a),(bar(c),bar(a),0)|`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b and c are complex numbers the determinant Delta|{:(0,-b,-c),( overset-b,0,-a),(overset-c,overset-a,0):}| is

If a,b,c are comples number and z= |{:(,0,-b,-c),(,bar(b),0,-a),(,bar(c),bar(a),0):}| then show tha z is purely imaginary

If a,b,c are comples number and z= |{:(,0,-b,-c),(,bar(b),0,-a),(,bar(c),bar(a),0):}| then show tha z is purely imaginary

If a,b,c are comples number and z= |{:(,0,-b,-c),(,bar(b),0,-a),(,bar(c),bar(a),0):}| then show tha z is purely imaginary

If bar(a),bar(b),bar(c) are coplanar then the value of |[bar(a),bar(b),bar(c)],[bar(a)*bar(a),bar(a)*bar(b),bar(a)*bar(c)],[bar(b).bar(a),bar(b)*bar(b),bar(b)*bar(c)]|=

([[bar(a),bar(b),bar(c)]])/([[bar(b),bar(a),bar(c)]]) =

i) bar(a), bar(b), bar(c) are pairwise non zero and non collinear vectors. If bar(a)+bar(b) is collinear with bar(c) and bar(b)+bar(c) is collinear with bar(a) then find the vector bar(a)+bar(b)+bar(c) . ii) If bar(a)+bar(b)+bar(c)=alphabar(d), bar(b)+bar(c)+bar(d)=betabar(a) and bar(a), bar(b), bar(c) are non coplanar vectors, then show that bar(a)+bar(b)+bar(c)+bar(d)=bar(0) .

If bar(a),bar(b),bar(c) are non-coplanar vectors such that then bar(b)xxbar(c)=bar(a),bar(c)xxbar(a)=bar(b) and bar(a)xxbar(b)=bar(c), then |bar(a)+bar(b)+bar(c)|=

if bar(a),bar(b),bar(c) are any three vectors then prove that [bar(a),bar(b)+bar(c),bar(a)+bar(b)+bar(c)]=0