Home
Class 12
MATHS
If y=(sqrt(1-sin4x)+1)/(sqrt(1+sin 4x)-1...

If `y=(sqrt(1-sin4x)+1)/(sqrt(1+sin 4x)-1)`, then y can be

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(sqrt(1-sin4A)+1)/(sqrt(1+sin 4A)-1) , then y can be

If x=(sqrt(1-sin4 theta)+1)/(sqrt(1+sin4 theta)-1) then one of the values of x is

If y=tan^(-1) sqrt((1-sin 4x)/(1+sin 4x)),"then " dy/dx=

If y= sqrt ((1+sin x) /( 1-sin x) ,)then (dy)/(dx) =

If y=(tan^(-1)(sqrt(1+sin x)+sqrt(1-sin x)))/(sqrt(1+sin x)-sqrt(1-sin x)) find the value of (dy)/(dx)

Prove that cot^(-1) ((sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))) = (x)/(2), x in (0, (pi)/(4))

Prove that cot^(-1) ((sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))) = (x)/(2), x in (0, (pi)/(4))