Home
Class 12
MATHS
Let vec a xx vec b,vec b xx vec c,vec c ...

Let `vec a xx vec b`,`vec b xx vec c`,`vec c xx vec a` are non coplanar vectors and `[[vec a,vec b,vec c]]=1`.`vec r` is a vector such that `vec r.vec a`=`vec r.vec b`=`vec r.vec c`=2, then area of triangle whose vertices are `vec a`,`vec b` and `vec c` is (A) `|vecr|/2` (2) `2|vecr|` (C) `|vecr|/4` (D) `4|vecr|`

Promotional Banner

Similar Questions

Explore conceptually related problems

vec a,vec b,vec c are the three coplanar vectors and if vec r*vec a=vec r*vec b=vec r*vec c=0 then prove that vec r is a zero vector

If vec a,vec c,vec d are non-coplanar vectors,then vec d*{vec a xx[vec b xx(vec c xxvec d)]} is equal to

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

If vec a, vec b, vec c are non coplanar vectors such that, vec b xx vec c = vec a, vec c xx vec a = vec b, vec a xx vec b = vec c , then |vec a + vec b + vec c| =

If vec a, vec b and vec c are non coplanar unit vectors such that vec a xx (vec b xx vec c) = (vec b + vec c)/sqrt2 , then

If (vec a xx vec b) xx vec c = vec a xx (vec b xx vec c) , where vec a, vec b and vec c are any three vectors such that vec a. vec b ne 0, vec b . vec c ne 0 , then vec a and vec c are

vec a,vec b and vec c are three non-coplanar vectors and vec r is any arbitrary vector.Prove that [vec bvec cvec r]vec a+[vec c+vec avec r]vec b+[vec avec bvec r]vec c=[vec avec bvec c]vec r

Prove that if vec a,vec b,vec c and vec d are any four vectors, then (vec a xx vec b)*(vec c xx vec d)= [[vec a* vec c vec b* vec c], [vec a* vec d vec b* vec d]]

If vec(a),vec(b),vec (c ) are non - coplanar vectors vec (r) . vec(a) = vecr . vec(b) = vecr.vec(c ) = 0 , show that vec (r ) is a zero vector .