Home
Class 11
MATHS
Prove that .^(2n)C(n)=(2^(n)xx[1*3*5...(...

Prove that `.^(2n)C_(n)=(2^(n)xx[1*3*5...(2n-1)])/(n !)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: :2^(n)C_(n)=(2^(n)[1.3.5(2n-1)])/(n!)

Prove that , .^(2n)C_(n)=2^(n)(1.3.5...(2n-1))/(lfloorn)

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

Prove that: \ ^(2n)C_n=(2^n[1. 3. 5 (2n-1)])/(n !)

Prove that : ^(2n)C_n = (2^n [1.3.5. ..........(2n-1)])/(n!) .

Prove that ((2n+1)!)/(n!)=2^(n)[1.3.5.....(2n-1)*(2n+1)]

Prove that ((2n)!)/(n!) =2^(n) (1,3,5,……..(2n-1)) .

Prove that .^(2n)P_(n)={1.3.5.....(2n-1)}.2n

Prove that ((4n)C_(2n))/((2n)C_(n))=(1.3.5...(4n-1))/([1.3.5...(2n-1)]^(2))