Home
Class 10
MATHS
Prove that tantheta/(1-cottheta)+cotthet...

Prove that `tantheta/(1-cottheta)+cottheta/(1-tantheta)=1+sectheta+tantheta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tantheta/(1-cottheta)+cottheta/(1-tantheta)=1+secthetacosectheta

sintheta/(1-cottheta)+costheta/(1-tantheta)=

tantheta /(1-cottheta ) + cottheta/(1-tan theta)= 1+sectheta*cosectheta

Prove that: (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+secthetacos e ctheta

tantheta/(1-cottheta)+cottheta/(1-tantheta)=1+tantheta+cottheta .

Prove that : (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+sectheta" cosec "theta

Prove that: (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+tantheta+cottheta

Prove: (tantheta)/(1- cottheta)+(cottheta)/(1-tantheta)=1+tantheta+cottheta

If cottheta-tantheta=sectheta then theta =

Prove the following tantheta/(1-cottheta) +cottheta/(1-tantheta) =sectheta.cosectheta+1=1+tantheta+cottheta