Home
Class 11
MATHS
The minimum value of 4e^x+ 9e^-x is...

The minimum value of `4e^x+ 9e^-x` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of 4e^(2x) + 9e^(-2x) is-

The minimum value of 4e ^(2x) + 9e^(-2x) is

The minimum value of 3e^x+4e^(-x) is

Prove that , the minimum value of 9e^(x)+25e^(-x) is 30.

Prove that , the minimum value of (i) 4e^(2x)+9e^(-2x)" is "12 , (ii) (x)/(logx) is e.

The minimum value of x\ (log)_e x is equal to e (b) 1//e (c) -1//e (d) 2e (e) e

The maximum value of x^4e^ (-x^2) is (A) e^2 (B) e^(-2) (C) 12 e^(-2) (D) 4e^(-2)

The maximum value of x^4e^ (-x^2) is (A) e^2 (B) e^(-2) (C) 12 e^(-2) (D) 4e^(-2)

The maximum value of x^4e^ (-x^2) is (A) e^2 (B) e^(-2) (C) 12 e^(-2) (D) 4e^(-2)

The minimum value of e^((2x^(2)-2x+1)sin^(2)x) is e(b)(1)/(e)(c)1(d)0