Home
Class 12
MATHS
[" 3.If "vec a timesvec b=vec b timesvec...

[" 3.If "vec a timesvec b=vec b timesvec c!=0," where "vec a,vec b" and "vec c" are coplanar vectors,then for some scalar "k" prove that "],[vec a+vec c=vec kvec b]

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a xxvec b=vec b xxvec c!=0, where vec a,vec b and vec c are coplanar vectors,then for some scalar k

vec a xxvec b=vec b xxvec c!=0, where vec a,vec b, and vec c are coplanar vectors,then for some scalar k prove that vec a+vec c=kvec b

If vec axx vec b= vec bxx vec c!=0,w h e r e vec a , vec b ,a n d vec c are coplanar vectors, then for some scalar k prove that vec a+ vec c=k vec bdot

If vec axx vec b= vec bxx vec c!=0,w h e r e vec a , vec b ,a n d vec c are coplanar vectors, then for some scalar k prove that vec a+ vec c=k vec bdot

If vec axx vec b= vec bxx vec c!=0,w h e r e vec a , vec b ,a n d vec c are coplanar vectors, then for some scalar k prove that vec a+ vec c=k vec bdot

Solve (vec a timesvec a)*vec b

Let vec a, vec b and vec c are unit coplanar vectors then the scalar triple product [2 vec a - vec b 2 vec b - vec c 2 vec c - vec a]

Let vec a, vec b and vec c be three vectors. Then scalar triple product [vec a, vec b, vec c]=

What is the value of [vec a vec b vec c] if vec a, vec b, vec c are non-zero coplanar vectors ?

(vec a xxvec b)xx(vec b xxvec c)=vec b, where vec a,vec b, and vec c are nonzero vectors,then vec a,vec b, and vec c can be coplanar vec a,vec b, and vec c must be coplanar vec a,vec b, and vec c cannot be coplanar none of these