Home
Class 12
MATHS
If y = x siny, prove that x.dy/dx = y / ...

If `y = x siny`, prove that `x.dy/dx = y / (1 - x cosy)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = x sin y, prove that x dy/dx = y/(1-x cosy)

If siny=x sin(a+y) , prove that, (dy)/(dx)=(sin a)/(1-2x cos a +x^(2)) .

If y= (x)/( x+a) , prove that x (dy)/( dx) = y(1-y) .

If ye^y=x prove that (dy)/(dx)= y/(x(1+y))

If ye^(y)=x , prove that, (dy)/(dx)=(y)/(x(1+y)) .

If cosy=x cos(a+y)," prove that " (dy)/(dx) =(cos^(2)(a+y))/(sin a) , where a ne 0 is a constant .

If ye^(y)=x, prove that,(dy)/(dx)=(y)/(x(1+y))

If y = x^(x ^(x^(x ^(x.... oo) then prove that x dy/dx = y^2/(1- y logx )

If sec((x+y)/(x-y))=a , prove that (dy)/(dx)=y/x .