Home
Class 12
MATHS
If vecp=3veca-5vecb; vecq=2veca+vecb; ve...

If `vecp=3veca-5vecb`; `vecq=2veca+vecb`; `vecr=veca+4vecb` ; `vecs=-veca+vecb` are four vectors such that `sin(vecp ^^ vecq)=1` and `sin(vecr ^^ vecs) =1` then `cos(veca ^^ vecb)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the two adjacent sides of two rectangles are reprresented by vectors vecp=5veca-3vecb, vecq=-veca-2vecband vecr=-4 veca-vecb,vecs=-veca+vecb , respectively, then the angle between the vectors vecx=1/3(vecp+vecr+vecs) and vecy=1/5(vecr+vecs) is

If the two adjacent sides of two rectangles are reprresented by vectors vecp=5veca-3vecb, vecq=-veca-2vecband vecr=-4 veca-vecb,vecs=-veca+vecb , respectively, then the angle between the vectors vecx=1/3(vecp+vecr+vecs) and vecy=1/5(vecr+vecs) is

Given that vecp=veca+vecb and vecq=veca-vecb and |veca|=|vecb| , show that vecp.vecq=0

If vecp=2veca-3vecb, vecq=veca-2b+vecc, vecr=-3veca+vecb+2vecc, veca,vecb,vecc being non-zero, non-coplanar vectors, then -2veca+vecb-vecc is equal to

If vecp=2veca-3vecb, vecq=veca-2b+vecc, vecr=-3veca+vecb+2vecc, veca,vecb,vecc being non-zero, non-coplanar vectors, then -2veca+vecb-vecc is equal to

Given that vecp=veca+vecb and vecq=veca-vecb and |veca|=|vecb|, show that vecp.veca=0

If veca, vecb,vec c are unit vectors such that veca+vecb+vec c=veco , then the value of veca*vecb+vecb*vec c+vec c*veca is -

If vecp = veca - vecb , vecq = vec a + vec b and |veca| = |vecb| = 2 , then the value of |vecp xx vecq| is equal to

If veca , vecb and vecc are three non-coplanar vectors and vecp , vecq and vecr are vectors defined by vecp = (vecb xx vecc)/([veca vecb vecc]) , vecq = (vecc xx veca)/([veca vecb vecc]) and vecr = (veca xx vec b)/([veca vecb vec c]) , then the value of (veca + vecb) * (vecb + vecc) * vecq + (vecc + vec a) * vecr =

If veca and vecb are mutually perpendicular unit vectors, vecr is a vector satisfying vecr.veca =0, vecr.vecb=1 and (vecr veca vecb)=1 , then vecr is: