Home
Class 11
MATHS
If lim(x->2^-) (ae^(1/|x+2|)-1)/(2-e^(1/...

If `lim_(x->2^-) (ae^(1/|x+2|)-1)/(2-e^(1/(|x+2|)))= lim_(x->2^+)sin ((x^4-16)/(x^5+32))`, then a is

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 2^-) (a-e^(1/(|x+2|)))/(1-2e^(1/(|x+2|)))=lim_(x->2^+ ) sin((x^4-16)/(x^5+32)) then a is

If lim_(xto-2^(-)) (ae^(1//|x+2|)-1)/(2-e^(1//|x+2|))=lim_(xto-2^(+)) sin((x^(4)-16)/(x^(5)+32)), then a is

If lim_(xto-2^(-)) (ae^(1//|x+2|)-1)/(2-e^(1//|x+2|))=lim_(xto-2^(+)) sin((x^(4)-16)/(x^(5)+32)), then a is

If lim_(xto-2^(-)) (ae^(1//|x+2|)-1)/(2-e^(1//|x+2|))=lim_(xto-2^(+)) sin((x^(4)-16)/(x^(5)+32)), then a is

lim_(x to 0) (e^(x^2) - 1)/sin^2x

lim_(x->0)(e^(x)-1)/(sqrt(4+x)-2) =

lim_(x to -1) (x^(8)+x^(4)-2)/(x-5)

lim_(x to -1) (x^(8)+x^(4)-2)/(x-5)

Evaluate: lim_(x->2) (x^2-1)/(2x+4)

The value of lim_(x rarr0)((e^(1/x^(2))-1)/(e^(1/x^(2)+1))) is :