Home
Class 11
MATHS
Let f(x) ={((kcosx)/(pi-2x), if ,x!=pi/2...

Let f(x) =`{((kcosx)/(pi-2x), if ,x!=pi/2),(3 ,if ,x=pi/2):}`, then find the value of `k` if `lim_(x rarrpi/2) f(x)=f(pi/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) =(kcosx)/(pi-2x) if x!=pi/2 and f(x)=3 if x=pi/2 then find the value of k if lim_(x->pi/2) f(x)=f(pi/2)

For f(x)=(k cos x)/(pi-2x), if x!=(pi)/(2),3, if x=(pi)/(2) then find the value of k so that f is continous at x=(pi)/(2)

Let f(x)={:{((kcosx)/(pi-2x)',xne(pi)/(2)),(3",",x=(pi)/(2).):} If lim_(xrarr(pi)/(2))f(x)=f((pi)/(2)), find the value of k.

Determine the value of k, if f(x) = {((kcosx)/(pi-2x),if x!=(pi)/2),(3,if x = (pi)/2):}

f(x),={(k cos x)/(pi-2x),quad if x!=(pi)/(2) and 3,quad if x=(pi)/(2) at x,=(pi)/(2)

Let f(x)={:{((kcosx)/(pi-2x)',xne(pi)/(2)),(3",",x=(pi)/(2).):} If lim_(xto(pi)/(2))f(x)=f((pi)/(2)), find the value of k.

f(x) = {{:((k cosx )/((pi - 2x)"," if x ne (pi)/(2))),(3"," if x = (pi)/(2)):} at x = (pi)/(2) .

Find the value of k so that the function f defined by f(x)={((kcos x)/(pi-2x)),when x!=pi/2),(0,atx=pi/2):} is continuous at x = (pi)/2 .

Given f'(x) = (cos x )/( x ), ,f ((pi)/(2)) =a, f ((3pi)/(2))=b. Find the vlaue of the definite integral int _( pi//2) ^(3pi//2) f (x) dx.