Home
Class 12
MATHS
If a != b then the length of common chor...

If `a != b` then the length of common chord of the circles `(x-a)^2+(y-b)^2 = c^2` and `(x-b)^2 + (y-a)^2 = c^2` is (A) `sqrt(4c^2-2(a-b)^2)` (B) `sqrt(c^ 2-(a-b)^2)` (C) `sqrt(3 c^ 2- (a- b)^2)` (D) `sqrt(2c^2(a- b)^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The length of the common chord of the two circles (x-a)^2+(y-b)^2=c^2,(x-b)^2+(y-a)^2=c^2 is

The length of the common chord of the circles (x-a)^(2)+(y-b)^(2)=c^(2) and (x-b)^(2)+(y-a)^(2)=c^(2) , is

The length of the common chord of the circles (x-a)^(2)+(y-b)^(2)=c^(2) and (x-b)^(2)+(y-a)^(2)=c^(2) , is

The length of the common chord of the circles (x-a)^(2)+(y-b)^(2)=c^(2) and (x-b)^(2)+(y-a)^(2)=c^(2) , is

Show that the length of the common chord of the circles (x-a)^(2) + (y-b)^(2) = c^(2) and (x-b)^(2) + (y-a)^(2) = c^(2) is sqrt(4c^(2) -2(a-b)^(2)) unit.

If a!=b then the length of common chord of the circles (x-a)^(2)+(y-b)^(2)=c^(2) and (x-b)^(2)+(y-a)^(2)=c^(2) is (A)sqrt(4c^(2)-2(a-b)^(2))(B)sqrt(c^(2)-(a-b)^(2))(C)sqrt(3c^(2)-(a-b)^(2))(D)sqrt(2c^(2)(a-b)^(2))(C)

The length of the common chord of the circles (x - a)^(2) + (y - b)^(2) =c^2" and " (x -b)^(2) + (y -a)^(2) = c^(2) = c^(2) is

The equation of the common chord of the two circles (x -a)^(2) + (y - b)^(2) = c^(2), (x - b)^(2) + (y - a)^(2) = c^(2) is