Home
Class 12
MATHS
The length of the common chord of the ci...

The length of the common chord of the circles `(x-a)^(2)+(y-b)^(2)=c^(2)` and `(x-b)^(2)+(y-a)^(2)=c^(2)`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

If a!=b then the length of common chord of the circles (x-a)^(2)+(y-b)^(2)=c^(2) and (x-b)^(2)+(y-a)^(2)=c^(2) is (A)sqrt(4c^(2)-2(a-b)^(2))(B)sqrt(c^(2)-(a-b)^(2))(C)sqrt(3c^(2)-(a-b)^(2))(D)sqrt(2c^(2)(a-b)^(2))(C)

The length of the common chord of the circles (x - a)^(2) + (y - b)^(2) =c^2" and " (x -b)^(2) + (y -a)^(2) = c^(2) = c^(2) is

The length of the common chord of the circles (x-a)^(2)+y^(2)=r^(2) and x^(2)+(y-b)^(2)=r^(2) is

The equation of the common chord of the two circles (x -a)^(2) + (y - b)^(2) = c^(2), (x - b)^(2) + (y - a)^(2) = c^(2) is

If the circles (x-a)^(2)+(y-b)^(2)=c^(2) and (x-b)^(2)+(y-a)^(2)=c^(2) touch each other, then

If the circles (x-a)^(2)+(y-b)^(2)=c^(2) and (x-b)^(2)+(y-a)^(2)=c^(2) touch each other, then

The length of the common chord of the two circles (x-a)^2+(y-b)^2=c^2,(x-b)^2+(y-a)^2=c^2 is