Home
Class 12
MATHS
If y=a+b x^2,\ a ,\ b arbitrary constant...

If `y=a+b x^2,\ a ,\ b` arbitrary constants, then `(d^2y)/(dx^2)=2\ x y` (b) `x(d^2y)/(dx^2)=y_1` (c) `x(d^2y)/(dx^2)-(dy)/(dx)+y=0` (d) `x(d^2y)/(dx^2)=2\ x y`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=a+bx^(2),a,b arbitrary constants,then (d^(2)y)/(dx^(2))=2xy( b) x(d^(2)y)/(dx^(2))=y_(1)(c)x(d^(2)y)/(dx^(2))-(dy)/(dx)+y=0(d)x(d^(2)y)/(dx^(2))=2xy

x(d^(2)y)/(dx^(2))+(dy)/(dx)+x=0

If x=logp and y=1/p ,then (a) (d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2)+y=0 (c) (d^2y)/(dx^2)+(dy)/(dx)=0 (d) (d^2y)/(dx^2)-(dy)/(dx)=0

If x=logp and y=1/p ,then (a) (d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2)+y=0 (c) (d^2y)/(dx^2)+(dy)/(dx)=0 (d) (d^2y)/(dx^2)-(dy)/(dx)=0

If x=logp and y=1/p ,then (a) (d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2)+y=0 (c) (d^2y)/(dx^2)+(dy)/(dx)=0 (d) (d^2y)/(dx^2)-(dy)/(dx)=0

The differential equation representing the family of curves given by y=ae^(-3x)+b , where a and b are arbitrary constants, is a) (d^(2)y)/(dx^(2))+3(dy)/(dx)-2y=0 b) (d^(2)y)/(dx^(2))-3(dy)/(dx)=0 c) (d^(2)y)/(dx^(2))-3(dy)/(dx)-2y=0 d) (d^(2)y)/(dx^(2))+3(dy)/(dx)=0

If x=log pandy=(1)/(p), then (a) (d^(2)y)/(dx^(2))-2p=0 (b) (d^(2)y)/(dx^(2))+y=0 (c) (d^(2)y)/(dx^(2))+(dy)/(dx)=0( d) (d^(2)y)/(dx^(2))-(dy)/(dx)=0

If y=xlog(x/(a+b x)),t h e nx^3(d^2y)/(dx^2)= (a) x(dy)/(dx)-y (b) (x(dy)/(dx)-y)^2 y(dy)/(dx)-x (d) (y(dy)/(dx)-x)^2

If y=x log((x)/(a+bx)), thenx ^(3)(d^(2)y)/(dx^(2))= (a) x(dy)/(dx)-y (b) (x(dy)/(dx)-y)^(2)y(dy)/(dx)-x(d)(y(dy)/(dx)-x)^(2)

Which of the following differential equations has y = x as one of its particular solution? (A) (d^2y)/(dx^2)-x^2(dy)/(dx)+x y=x (B) (d^2y)/(dx^2)+x(dy)/(dx)+x y=x (C) (d^2y)/(dx^2)-x^2(dy)/(dx)+x y=0 (D) (d^2y)/(dx^2)+x(dy)/(dx)+x y=0