Home
Class 12
MATHS
Value of L= lim(n->oo) 1/n^4[1.sum(k=...

Value of `L= lim_(n->oo) 1/n^4[1.sum_(k=1)^n k+2.sum_(k=1)^(n-1) k+3.sum_(k=1)^(n-2) k+.........+n.1]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n->oo) n^(1/n)

lim_(n->oo) nsin(1/n)

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of Lim_(n to oo) n!/((n+1)!-n!)

lim_(n rarr oo)2^(1/n)

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :