Home
Class 12
MATHS
The sum of the series 1/(2!)-1/(3!)+1/(4...

The sum of the series `1/(2!)-1/(3!)+1/(4!)-...` upto infinity is (1) `e^(-2)` (2) `e^(-1)` (3) `e^(-1//2)` (4) `e^(1//2)`

Text Solution

AI Generated Solution

To find the sum of the series \( S = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \ldots \) up to infinity, we can relate it to the exponential function. ### Step-by-Step Solution: 1. **Recognize the Series**: The series can be rewritten as: \[ S = \sum_{n=2}^{\infty} \frac{(-1)^{n}}{n!} \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|15 Videos
  • SETS

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|2 Videos

Similar Questions

Explore conceptually related problems

The sum of the series (1)/(1*2)-(1)/(2*3)+(1)/(3*4)--- upto oo is equal to

The sum of the series 1+2x+3x^(2)+4x^(3)+... upto infinity when x lies between 0 and 1 i.e.,0

The sum of the series (1^(2))/(2!)+(2^(2))/(3!)+(3^(2))/(4!)+ is e+1 b.e-1 c.2e+1 d.2e-1

The sum of the series 1+1/4.2!1/16.4!+1/64.6!+………to oo is (A) (e+1)/(2sqrt(e)) (B) (e-1)/sqrt(e) (C) (e-1)/(2sqrt(e)) (D) (e+1)/2sqrt(e)

Find the sum of the series e^(x-(1)/(2)(x -1)^(2) + (1)/(3) (x -1)^(3) - (1)/(4) (x -1)^(4) + ...

Statement -1: The sum of the series (1)/(1!)+(2)/(2!)+(3)/(3!)+(4)/(4!)+..to infty is e Statement 2: The sum of the seies (1)/(1!)x+(2)/(2!)x^(2)+(3)/(3!)x^(3)+(4)/(4!)x^(4)..to infty is x e^(x)

Sum of the infinite series (1)/(2!)+(1+2)/(3!)+(1+2+3)/(4!)+...to oo(e)/(3) b.e c.(e)/(2)d . none of these

Prove that, 1/(1.2)-1/(2.3)+1/(3.4)-.....=2log_e2-1

The sum to infinity of the following series (1)/(1*2)+(1)/(2*3)+(1)/(3*4)+.... shall be

Sum of the series S=1+(1)/(2)(1+2)+(1)/(3)(1+2+3)+(1)/(4)(1+2+3+4)+ upto 20 terms is

JEE MAINS PREVIOUS YEAR-SEQUENCES AND SERIES-All Questions
  1. In a geometric progression consisting of positive terms, each term ...

    Text Solution

    |

  2. The sum of the series 1/(2!)-1/(3!)+1/(4!)-... upto infinity is (1...

    Text Solution

    |

  3. The average marks of boys in a class is 52 and that of girls is 42....

    Text Solution

    |

  4. The first two terms of a geometric progression add up to 12. The su...

    Text Solution

    |

  5. 1+2/3+6/(3^2)+10/(3^3)+14/(3^4)+

    Text Solution

    |

  6. A person is to count 4500 currency notes. Let an denote the number ...

    Text Solution

    |

  7. A man saves Rs. 200 in each of the first three months of his service. ...

    Text Solution

    |

  8. If 100 times the 100^(t h) term of an AP with non zero common diffe...

    Text Solution

    |

  9. Statement 1: The sum of the series 1""+""(1""+""2""+""4)""+""(4""+"...

    Text Solution

    |

  10. If x, y, z are in A.P. and t a n^(-1)x ,""t a n^(-1)y""a n d""t a n...

    Text Solution

    |

  11. The sum of first 20 terms of the sequence 0.7, 0.77, 0.777, .. , is...

    Text Solution

    |

  12. Three positive numbers from an increasing G.P. If the middle term i...

    Text Solution

    |

  13. If (10)^9+""2(11)^1(10)^8+""3(11)^2(10)^7+""ddot""+""10(11)^9=k(10)^9 ...

    Text Solution

    |

  14. If m is the A.M. of two distinct real numbers l and n""(""l ,""n"">"...

    Text Solution

    |

  15. The sum of first 9 terms of the series (1^3)/1+(1^3+2^3)/(1+3)+(1^3...

    Text Solution

    |

  16. If the sum of the first ten terms of the series (1 3/5)^2+(2 2/5)^2+(3...

    Text Solution

    |

  17. If the 2nd , 5th and 9th terms of a non-constant A.P. are in G.P...

    Text Solution

    |

  18. For any three positive real numbers a , b and c ,9(25 a^2+b^2)+25(c^2...

    Text Solution

    |