Home
Class 12
MATHS
If k in Ro then {adj(k In)} is equal to...

If `k in R_o` then `{adj(k I_n)}` is equal to (A) `K^(n-1)` (B) `K^(n(n-1))` (C) `K^n` (D) `k`

Promotional Banner

Similar Questions

Explore conceptually related problems

If k in R_o t h e n det{a d j(k I_n)} is equal to

If k in R_o then det{adj(k I_n)} is equal to (A) K^(n-1) (B) K^((n-1)n) (C) K^n (D) k

If k in R_o then det{adj(k I_n)} is equal to (A) K^(n-1) (B) K^((n-1)n) (C) K^n (D) k

If k in R_(o) then {adj(kI_(n))} is equal to (A) K^(n-1)(B)K^(n(n-1))(C)K^(n)(D)k

If k in R_o then det{a d j(k I_n)} is equal to a. K^(n-1) b. K^(n(n-1)) c. K^n d. k

If k in R_ot h e ndet{a d j(k I_n)} is equal to K^(n-1) b. K^(n(n-1)) c. K^n d. k

If A is a square matrix of order n xx n and k is a scalar, then adj (kA) is equal to (1) k adj A (2) k^n adj A (3) k^(n-1) adj A (4) k^(n+1) adj A

If A is a square matrix of order n xx n and k is a scalar, then adj (kA) is equal to (1) k adj A (2) k^n adj A (3) k^(n-1) adj A (4) k^(n+1) adj A

If A is a square matrix of order n xx n and k is a scalar, then adj (kA) is equal to (1) k adj A (2) k^n adj A (3) k^(n-1) adj A (4) k^(n+1) adj A

If .^(n)C_(3)=k.n(n-1)(n-2) then k=