Home
Class 12
MATHS
Let bara,barb,barc are three vectors of...

Let `bara,barb,barc` are three vectors of magnitudes `1,1/sqrt2,sqrt2` respectively, satisfying `[bar a bar b bar c]=1` value of `(2 bar a+bar b+bar c)*(bar a xx bar c) xx (bar a-bar c)+bar b)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

IF bar a , bar b , bar c are mutually perpendicular vectors having magnitudes 1,2,3 respectively then [ bar a + bar b + bar c " " bar b - bar a " " bar c ]=?

(bar(a)+2bar(b)-bar(c))*(bar(a)-bar(b))xx(bar(a)-bar(bar(c)))=

if bar a+2 bar b+3bar c=bar 0 then bar axxbar b+bar b xx bar c+bar cxx bara = lambda (bar b xx bar c) ,where lambda=

Let bar(a) , bar(b) and bar(c) be vectors with magnitudes 3,4 and 5 respectively and bar(a)+bar(b)+bar(c)=0 then the value of bar(a).bar(b)+bar(b).bar(c)+bar(c).bar(a) is

bar a, bar b, bar c are three vectros, then prove that: (bar a xx bar b) xx bar c = (bar a. bar c) bar b-(bar b. bar c) bar a.

Let bar(a),bar(b) and bar(c) be three vectors having magnitudes 1,1 and 2 respectively. If bar(a)times(bar(a)times bar(c))-bar(b)=0 then the acute angle between bar(a) and bar(c) is

If bar r=l(bar b xx bar c)+m(bar c xx bar a)+n(bar a xx bar b) and [bar a bar b bar c]=2 , then l+m+n is equal to

Compute bar(a) xx (bar(b) + bar(c )) + bar(b) xx (bar(c ) +bar(a)) + bar(c ) xx (bar(a)+bar(b))

Let bar a,bar b,bar c be three non-coplanar vectors and bar d be a non-zero vector, which is perpendicularto bar a+bar b+bar c . Now, if bar d= (sin x)(bar a xx bar b) + (cos y)(bar b xx bar c) + 2(bar c xx bar a) then minimum value of x^2+y^2 is equal to