Home
Class 11
MATHS
The number of orded 4-tuples (x,y,z,w) w...

The number of orded 4-tuples `(x,y,z,w)` where `x,y,z,w in[0,10]` which satisfy the inequality `2^(sin^(2)x)xx3^(cos^(2)y)xx4^(sin^(2)z)xx5^(cos^(2)w)ge120,` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of ordered 5-tuple (u,v,w,x,y) where u,v,w,x, y in [1,11] which satisfy the in equal,it 2^(sin^(2)u+3cos^(2)v).3^(sin^(2)x).5^(cos^(2)y)ge720 is

The number of ordered 5 -tuple (u,v,w,x,y) where (u,v,w,x,y in[1,11]) which satisfy the inequality 2^(sin^(2)u+3cos^(2)v)*3^(sin^(2)w+cos^(2)x)*5^(cos^(2)y)>=720 is

The number of ordered 5-tuple (u, v, w, x, y) where (u, v, w, x, y in [1, 11]) which satisfy the inequality 2^(sin^2u+3cos^2v).3^(sin^2w+cos^2x).5^(cos^2y)>=720 is

The number of ordered 5-tuple (u, v, w, x, y) where (u, v, w, x, y in [1, 11]) which satisfy the inequality 2^(sin^2u+3cos^2v).3^(sin^2w+cos^2x).5^(cos^2y)>=720 is

Let N be the number of triplets (x,y,z) where x,y,z in[0,2 pi] satisfying the inequality (4+sin4x)(2+cot^(2)-y)(1+sin^(4)+z)<12sin^(2)-z Find the value of (N)/(2)

The number of integers x,y,z, w such that x +y+z+w=20 and x , y, w,z ge -1 is

" If "sin x+sin y+sin z+sin w=4," then "sin^(2019)x+sin^(2020)y+cos^(2021)z+cos^(2020)w