Home
Class 12
MATHS
Let a function f(x, alpha) be continuou...

Let a function `f(x, alpha)` be continuous for `a leq x leq b and 0 leq a leq d`. Then, for any `alpha in [c, d]`, if `I(alpha) =int_a^b f (x, alpha) dx` , then `d/(d alpha)(I(alpha))=int_a^b rho f(x,alpha)/(rho alpha) dx`.

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of alpha in (-pi, 0) satisfying sin alpha+int_(alpha)^(2alpha) cos2 x dx=0 , is

If int_(0)^(1)e^(x)-2(x-alpha)dx=0, then aly alpha<2(b)=alpha<0(c)=0

If 0 le alpha le 2pi and int_(0)^(alpha)cos x dx = cos 2alpha , the : alpha =

A value of alpha such that int_(alpha)^(alpha+1) (dx)/((x+alpha)(x+alpha+1))="loge"((9)/(8)) is

If f(x)=(tan x cot alpha)^((1)/(x-a)),x!=alpha is continuous at x=alpha, then the value of f(alpha) is

The value of the integral int_(0)^(1)(dx)/(x^(2)+2x cos alpha+1) is equal to (a)sin alpha(b)alpha sin alpha(c)(alpha)/(2sin alpha)(d)(alpha)/(2)sin alpha

Let f(x) be a function defined by f (x)=int_1^x x(x^2-3x+2)dx, 1 leq x leq 4 . Then, the range of f(x) is

int_(0)^((alpha)/3)(f(x))/(f(x)+f((alpha-3x)/3))dx=

int_(0)^((alpha)/3)(f(x))/(f(x)+f((alpha-3x)/3))dx=

The value of int_0^(pi/2) sin|2x-alpha|dx, where alpha in [0,pi], is (a) 1-cos alpha (b) 1+cos alpha (c) 1 (d) cos alpha