Home
Class 12
MATHS
The solution of the differential equatio...

The solution of the differential equation `(dy)/(dx)=(x^2+x y+y^2)/x^2` is (A) `tan^-1 (x/y)=log y+c ` (B) `tan^-1(y/x)=logx+c ` (C) `tan^-1(x/y)=log x+c` (D) `tan^-1(y/x)=log y+c `

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation (dy)/(dx)=(x^(2)+xy+y^(2))/(x^(2)) is (A)tan^(-1)((x)/(y))^(2)=log y+c(B)tan^(-1)((y)/(x))=log x+c(C)tan^(-1)((x)/(y))=log x+c(D)tan^(-1)((y)/(x))=log y+c

The solution of the differential equation (dy)/(dx)=(x^2+x y+y^2)/(x^2), is a.) tan^(-1)(x/y)=logy+C b.) tan^(-1)(y/x)=logx+C c.) tan^(-1)(x/y)=logx+C d.) tan^(-1)(y/x)=logy+C

The solution of the differential equation (dy)/(dx)=(x^(2)+xy+y^(2))/(x^(2)), is tan^(-1)((x)/(y))^(2)=log y+Ctan^(-1)((y)/(x))=log x+Ctan^(-1)((x)/(y))=log x+Ctan^(-1)((y)/(x))=log y+C

The solution of the differential equation x(dy)/(dx)=y ln ((y^(2))/(x^(2))) is (where, c is an arbitrary constant)

The solution of the differential equation x(dy)/(dx)=y ln ((y^(2))/(x^(2))) is (where, c is an arbitrary constant)

The solution of the differential equation cos y log (sec x + tan x)dx=cos x log(sec y + tan y)dy is

y = log x + c is a solution of the differential equation x(d^(2)y)/(dx^(2)) + (dy)/(dx) = 0