Home
Class 12
MATHS
The value of cot(cose c^(-1)5/3+tan^(-1)...

The value of `cot(cose c^(-1)5/3+tan^(-1)2/3)` is: (1) `6/(17)` (2) `3/(17)` (2) `4/(17)` (4) `5/(17)`

Text Solution

AI Generated Solution

To find the value of \( \cot\left(\cos^{-1}\left(\frac{5}{3}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right) \), we can follow these steps: ### Step 1: Define the angles Let: - \( \theta_1 = \cos^{-1}\left(\frac{5}{3}\right) \) - \( \theta_2 = \tan^{-1}\left(\frac{2}{3}\right) \) ### Step 2: Find the sides of the triangle for \( \theta_1 \) ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|17 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)(15/17)+2 tan^(-1)(1/5)=

The value of tan[cos^(-1)((4)/(5))+tan^(-1)((2)/(3))] is (6)/(17) (b) (7)/(16) (c) (16)/(7) (d) none of these

3/17 + 6/17 + (-4)/17

The value of cot17^(@)(cot73^(@)cos^(2)22^(@)+(1)/(cot17^(@)sec^(2)68^(@))) is

The value of tan{cos^(-1)(1)/(5sqrt(2))-sin^(-1)(4)/(sqrt(17))} is (sqrt(29))/(3)( b) (29)/(3)(c)(sqrt(3))/(29) (d) (3)/(29)]}

Find the value of : ((3.9)^2-(1.7)^2)/(3.9-1.7)

Prove that 2sin^(-1)[(3)/(5)]-tan^(-1)[(17)/(31)]=(pi)/(4)