Home
Class 8
MATHS
Divide: x^(4a)+x^(2a)y^(2b)+y^(4b)\ b y\...

Divide: `x^(4a)+x^(2a)y^(2b)+y^(4b)\ b y\ \ x^(2a)+\ x^a\ y^b+\ y^(2b)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Divide: x^(4a)+x^(2a)y^(2b)+y^(4b)byx^(2a)+x^(a)y^(b)+y^(2b)

Divide: x^4-y^4b y\ x^2-y^2 (ii) a c x^2+\ (b c+a d)x+b d\ b y\ (a x+b)

Divide: x^2-5x+6b y\ x-3 (ii) a x^2-a y^2b y\ a x+a y

Factorise the using the identity a ^(2) -b ^(2) = (a +b) (a-b). x ^(4) - y ^(4) + x ^(2) - y ^(2)

Divide: 3x^3y^2+2x^2y+15 x y\ b y\ 3x y x^2+7x+12\ b y\ x+4

Divide: 35 a^2+32 a-99\ b y\ 7a-9 a x^2+(b+a c)x+b c\ b y\ x+c

Factorise the using the identity a ^(2) -b ^(2) = (a +b) (a-b). (x + y) ^(4) - (x - y)^(4)

Solve: (a - b )x + (a + b)y = a^(2) - 2ab - b^(2) and (a + b) (x + y) = a^(2) + b^(2)

Factorize each of the following expressions: x a^2+x b^2-y a^2-y b^2 (2) x^2+x y a+x z+y z (3) 2a x+b x+2a y+b y (4) a b-b y-a y+y^2

If the origin is shifted to the point ((a b)/(a-b),0) without rotation, then the equation (a-b)(x^2+y^2)-2a b x=0 becomes (A) (a-b)(x^2+y^2)-(a+b)x y+a b x=a^2 (B) (a+b)(x^2+y^2)=2a b (C) (x^2+y^2)=(a^2+b^2) (D) (a-b)^2(x^2+y^2)=a^2b^2