Home
Class 12
MATHS
y=x^(1/(log10 x))...

`y=x^(1/(log_10 x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function : y=f(x)=(1)/(log_(10)(1-x))+sqrt(x+2) is :

The domain of the function y = f (x)=(1)/(log _(10) (1-x))+sqrt(x +2) is

The domain of the function y = f (x)=(1)/(log _(10) (1-x))+sqrt(x +2) is

If y=10^((1)/(1-log_(10)x)) and z=10^((1)/(1-log_(10)y)) show that x=10^((1)/(1-log_(10)z))

Solve the following equaions for x and y log_(10)x+(1)/(2)log_(10)x+(1)/(4)log_(10)x+"...."=y " and " (1+3+5+"...."+(2y-1))/(4+7+10+"...."+(3y-1))=(20)/(7log_(10)x) .

Solve the following equaions for x and y log_(10)x+(1)/(2)log_(10)x+(1)/(4)log_(10)x+"...."=y " and " (1+3+5+"...."+(2y-1))/(4+7+10+"...."+(3y-1))=(20)/(7log_(10)x) .

Solve the following equations for x and y: log_10x+log_10(x)^(1/2)+log_10(x)^(1/4)+….=y (1+3+5+…+(2y-1))/(4+7+10+..+(3y+1))=20/(7log_10x)

Solve the following equations for x and y: log_10x+log_10(x)^(1/2)+log_10(x)^(1/4)+….=y (1+3+5+…+(2y-1))/(4+7+10+..+(3y+1))=20/(7log_10x)

Solve the equations log_(1000)|x+y|=(1)/(2)*log_(10)y-log_(10)|x|=log_(100)4 for x and y