Home
Class 12
MATHS
If f is the centre of a circle inscribed...

If `f` is the centre of a circle inscribed in a triangle `ABC`, then `|vec(BC)|vec(IA)+|vec(CA)|vec(IB)+|vec(AB)|vec(IC)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If I is the centre of a circle inscribed in a triangle ABC , then |vec(BC)|vec(IA)+|vec(CA)|vec(IB)+|vec(AB)|vec(IC) is

In triangle ABC, find vec(AB)+vec(BC)+vec(CA)

Assertion: If I is the incentre of /_\ABC, then |vec(BC)| vec(IA) +|vec(CA)| vec(IB) +|vec(AB)| vec(IC) =0 Reason: If O is the origin, then the position vector of centroid of /_\ABC is (vec(OA)+vec(OB)+vec(OC))/3

Assertion: If I is the incentre of /_\ABC, then |vec(BC)| vec(IA) +|vec(CA)| vec(IB) +|vec(AB)| vec(IC) =0 Reason: If O is the origin, then the position vector of centroid of /_\ABC is (vec(OA)+vec(OB)+vec(OC))/3

Assertion: If I is the incentre of /_\ABC, then |vec(BC)|vec(IA)+|vec(CA)|vec(IB)+|vec(AB)|vec(IC)=0 Reason: If O is the origin, then the position vector of centroid of /_\ABC is (vecOA)+vec(OB)+vec(OC))/3 (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion: If I is the incentre of /_\ABC, then |vec(BC)|vec(IA)+|vec(CA)|vec(IB)+|vec(AB)|vec(IC)=0 Reason: If O is the origin, then the position vector of centroid of /_\ABC is (vecOA)+vec(OB)+vec(OC))/3 (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

If M is the midpoint of the side vec(BC) of a triangle ABC, prove that vec(AB)+vec(AC) = 2vec(AM)

The value of vec(AB)+vec(BC)+vec(DA)+vec(CD) is

If D is the midpoint of the side BC of a triangle ABC, prove that vec(AB)+vec(AC)=2vec(AD)

In a right angled triangle ABC, the hypotenuse AB =p, then vec(AB).vec(AC) + vec(BC).vec(BA)+vec(CA).vec(CB) is equal to: