Home
Class 12
MATHS
The vector vec a=""alpha hat i+2 hat ...

The vector ` vec a=""alpha hat i+2 hat j+""beta hat k` lies in the plane of the vectors ` vec b="" hat"i"+ hat j` and ` vec c= hat j+ hat k` and bisects the angle between ` vec b` and ` vec c` . Then which one of the following gives possible values of `alpha` and `beta` ? (1) `alpha=""2,beta=""2` (2) `alpha=""1,beta=""2` (3) `alpha=""2,beta=""1` (4) `alpha=""1,beta=""1`

A

`alpha=""2,beta=""2`

B

`alpha=""1,beta=""2`

C

`alpha=""2,beta=""1`

D

`alpha=""1,beta=""1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \alpha \) and \( \beta \) such that the vector \( \vec{a} = \alpha \hat{i} + 2 \hat{j} + \beta \hat{k} \) lies in the plane formed by the vectors \( \vec{b} = \hat{i} + \hat{j} \) and \( \vec{c} = \hat{j} + \hat{k} \), and also bisects the angle between \( \vec{b} \) and \( \vec{c} \). ### Step-by-step solution: 1. **Find the normal vector of the plane formed by \( \vec{b} \) and \( \vec{c} \)**: The normal vector \( \vec{n} \) can be found using the cross product: \[ \vec{b} \times \vec{c} = (\hat{i} + \hat{j}) \times (\hat{j} + \hat{k}) \] \[ = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = \hat{i}(1 \cdot 1 - 0 \cdot 1) - \hat{j}(1 \cdot 1 - 0 \cdot 0) + \hat{k}(1 \cdot 1 - 1 \cdot 0) \] \[ = \hat{i} - \hat{j} + \hat{k} \] Thus, \( \vec{n} = \hat{i} - \hat{j} + \hat{k} \). 2. **Check if \( \vec{a} \) lies in the plane**: For \( \vec{a} \) to lie in the plane, it must satisfy the equation \( \vec{n} \cdot \vec{a} = 0 \): \[ (\hat{i} - \hat{j} + \hat{k}) \cdot (\alpha \hat{i} + 2 \hat{j} + \beta \hat{k}) = 0 \] \[ \alpha - 2 + \beta = 0 \quad \Rightarrow \quad \alpha + \beta = 2 \quad \text{(Equation 1)} \] 3. **Find the angle bisector**: The angle bisector of two vectors \( \vec{b} \) and \( \vec{c} \) can be found using the formula: \[ \vec{a} = k \left( \frac{\vec{b}}{|\vec{b}|} + \frac{\vec{c}}{|\vec{c}|} \right) \] First, we calculate the magnitudes: \[ |\vec{b}| = \sqrt{1^2 + 1^2} = \sqrt{2}, \quad |\vec{c}| = \sqrt{0^2 + 1^2 + 1^2} = \sqrt{2} \] Thus, \[ \frac{\vec{b}}{|\vec{b}|} = \frac{1}{\sqrt{2}}(\hat{i} + \hat{j}), \quad \frac{\vec{c}}{|\vec{c}|} = \frac{1}{\sqrt{2}}(\hat{j} + \hat{k}) \] Therefore, \[ \vec{a} = k \left( \frac{1}{\sqrt{2}}(\hat{i} + \hat{j}) + \frac{1}{\sqrt{2}}(\hat{j} + \hat{k}) \right) = k \left( \frac{1}{\sqrt{2}} \hat{i} + \frac{2}{\sqrt{2}} \hat{j} + \frac{1}{\sqrt{2}} \hat{k} \right) \] \[ = k \left( \frac{1}{\sqrt{2}} \hat{i} + \sqrt{2} \hat{j} + \frac{1}{\sqrt{2}} \hat{k} \right) \] 4. **Comparing coefficients**: From the expression for \( \vec{a} \), we have: \[ \alpha = \frac{k}{\sqrt{2}}, \quad 2 = k\sqrt{2}, \quad \beta = \frac{k}{\sqrt{2}} \] From \( 2 = k\sqrt{2} \), we find \( k = \frac{2}{\sqrt{2}} = \sqrt{2} \). Substituting \( k \) back: \[ \alpha = \frac{\sqrt{2}}{\sqrt{2}} = 1, \quad \beta = \frac{\sqrt{2}}{\sqrt{2}} = 1 \] 5. **Final values**: Thus, the values of \( \alpha \) and \( \beta \) are: \[ \alpha = 1, \quad \beta = 1 \] ### Conclusion: The possible values of \( \alpha \) and \( \beta \) are \( \alpha = 1 \) and \( \beta = 1 \), which corresponds to option (4).

To solve the problem, we need to find the values of \( \alpha \) and \( \beta \) such that the vector \( \vec{a} = \alpha \hat{i} + 2 \hat{j} + \beta \hat{k} \) lies in the plane formed by the vectors \( \vec{b} = \hat{i} + \hat{j} \) and \( \vec{c} = \hat{j} + \hat{k} \), and also bisects the angle between \( \vec{b} \) and \( \vec{c} \). ### Step-by-step solution: 1. **Find the normal vector of the plane formed by \( \vec{b} \) and \( \vec{c} \)**: The normal vector \( \vec{n} \) can be found using the cross product: \[ \vec{b} \times \vec{c} = (\hat{i} + \hat{j}) \times (\hat{j} + \hat{k}) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|16 Videos

Similar Questions

Explore conceptually related problems

The vector vec P=alphahat i+betahat j+gammahat k, alpha!=0 ,lies in the plane of the vector vec Q=hat i+hat j and vec R=hat i+hat k and bisects the angle between vec Q and vec R .Then the value of (3 beta+4 gamma)/(2 alpha) is

A vector vec a=alphahat i+2hat j+betahat k , (alpha,beta in R) lies in the plane of the vectors, vec b=hat i+hat j and vec c=hat i-hat j+4hat k, where bar(a),bar(b),bar(c) are intersecting at origin. If vec a bisects the angle between vec b and vec c ,then

Find the angle between the vectors vec a and vec b where: vec a=2hat i-3hat j+hat k and vec b=hat i+hat j-2hat k

Find the angle between the vectors vec a and vec b where: vec a=2hat i-hat j+2hat k and vec b=4hat i+4hat j-2hat k

If vec a=hat i+hat j+hat k and vec b=hat j-hat k, find a vector vec c such that vec a x vec c=vec b and vec a*vec c=3

Find the angle between the vectors vec a and vec b where: vec a=hat i+2hat j-hat k,vec b=hat i-hat j+hat k

If vec a=hat i+hat j,vec b=hat j+hat k and vec c=hat k+hat i where unit vectors parallel to vec a+vec b-2vec cdots

If vec(a)=hat(i)-hat(j)+hat(k), vec(b) = 2 hat(i) + 3 hat( j) + 2 hat(k) and vec(c) = hat(i) - m hat(j) + n hat(k) are three coplanar vectors and |vec(c)|=sqrt(6) , then which one of the following is correct?

For given vectors,vec a=2hat i-hat j+2hat k and vec b=-hat i+hat j-hat k find the unit vector in the direction of the vector quad vec a+vec b

let vec a=hat i+hat j-hat k and vec b=hat i-hat j-hat k and vec c be a unit vector perpendicular to vec a and coplanarwith vec a and vec b then vec c is

JEE MAINS PREVIOUS YEAR-VECTOR ALGEBRA-All Questions
  1. Let bar a= hat i+ hat j+ hat k ,""b= hat i- hat j+2 hat k and bar...

    Text Solution

    |

  2. If hat u and hat v are unit vectors and theta is the acute ang...

    Text Solution

    |

  3. The resultant of two forces P N and 3 N is a force of 7 N. If the d...

    Text Solution

    |

  4. The statement pvec(qvecp) is equivalent to (1) pvec(pvecq) (...

    Text Solution

    |

  5. The nonzero verctors vec a , vec b and vec c are related by ...

    Text Solution

    |

  6. The vector vec a=""alpha hat i+2 hat j+""beta hat k lies in the pla...

    Text Solution

    |

  7. If vec u , vec v , vec w are noncoplanar vectors and p, q are real...

    Text Solution

    |

  8. The projections of a vector on the three coordinate axis are 6, 3, ...

    Text Solution

    |

  9. If the vectors vec a= hat i- hat j+2 vec k ,"" vec b=2 hat i+4 hat j+...

    Text Solution

    |

  10. Let vec a= hat j- hat k and vec c= hat i- hat j- hat k . Then vector...

    Text Solution

    |

  11. The vectors vec a and vec b are not perpendicular and vec c and...

    Text Solution

    |

  12. If a=1/(sqrt(10))(3 hat i+ hat k)"and" vec b=1/7(2 hat i+3 hat j-6 hat...

    Text Solution

    |

  13. Let hat a and hat b be two unit vectors. If the vectors vec c= hat ...

    Text Solution

    |

  14. Let ABCD be a parallelogram such that vec A B= vec q , vec A D= vec p...

    Text Solution

    |

  15. If the vectors bar (AB)=3 hat i+4 hat k and bar (AC)=5 hat i-2 hat j...

    Text Solution

    |

  16. If [ vec axx vec b"" vec bxx vec c"" vec cxx vec a]=lambda[ vec a vec ...

    Text Solution

    |

  17. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  18. Let vec a , vec b"and" vec c be there unit vectors such that vec axx...

    Text Solution

    |

  19. Let hat a=2 hat i+ hat j-2 hat k and vec b= hat i+ hat j . Let vec ...

    Text Solution

    |