Home
Class 11
MATHS
lim(x rarr1)(x^(4)-1)/(x-1)=lim(x rarr1)...

lim_(x rarr1)(x^(4)-1)/(x-1)=lim_(x rarr1)(x^(3)-k^(3))/(x^(2)-k^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Let lim_(x rarr1)(x^(4)-1)/(x-1)=lim_(k rarr k)(x^(3)-k^(3))/(x^(2)-k^(2)) then value of k is

lim_(x rarr1)(x^(3)-1)/(x-1)

lim_(x rarr1)(x^(2)-1)/(x-1)

lim_(x rarr1)(x^(2)-1)/(x-1)

Find value of a if lim_(x rarr1)(x^(4)-1)/(x-1)=lim_(x rarr a)(x^(3)-a^(3))/(x^(2)-a^(2))

Find the value of k, if lim_(x rarr 1) (x^(4)-1)/(x-1) = lim_(x rarr k)(x^(3)-k^(3))/(x^(2)-k^(2))

lim_(x rarr1)[(x^(2)+1)/(x+100)]

lim_(x rarr1)(x^(2)+x+1)/(2x+3)

lim_(x rarr1)(x^(2)+sqrt(x+3)-3)/(x^(2)-1)