Home
Class 12
MATHS
If vec(AB) = (2hati + hatj - 3hatk) and...

If `vec(AB) = (2hati + hatj - 3hatk)` and `A(1,2,-1)` is the given point, find the coordinates of B.

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(AB) =3 hati+ 2 hatj- hatk and the coordinate of A are (4,1,1), then find the coordinates of B.

6). If vec P Q=3 hat i+2 hat j- hat k and the coordinates of P are (1,-1,2), find the coordinates of Qdot (7). prove that the points hati-hatj,4hati-3hatj+hatk,2hati-4hatj+5hatk are the vertices of a right angled triangle.

If vec(A) = hati + 3hatj + 2hatk and vec(B) = 3hati + hatj + 2hatk , then find the vector product vec(A) xx vec(B) .

If vec(A) = 2hati +3 hatj +hatk and vec(B) = 3hati + 2hatj + 4hatk , then find the value of (vec(A) +vec(B)) xx (vec(A) - vec(B))

If vec a =hati +3hatj , vecb = 2hati -hatj - hatk and vec c =mhati +7 hatj +3hatk are coplanar then find the value of m.

(i) Find the distance of the point (-1,-5,-10) from the point of intersection of the line vec(r) = (2 hati - hatj + 2 hatk ) + lambda (3 hati + 4 hatj + 12 hatk) and the plane vec(r).(hati - hatj + hatk) = 5. (ii) Find the distance of the point with position vector - hati - 5 hatj - 10 hatk from the point of intersection of the line vec(r) = (2 hati - hatj + 2 hatk ) + lambda (3 hati + 4 hatj + 12 hatk ) and the plane vec(r). (hati - hatj + hatk)= 5. (iii) Find the distance of the point (2,12, 5) from the point of intersection of the line . vec(r) = 2 hati - 4 hatj + 2 hatk + lambda (3 hati + 4 hatj + 12 hatk ) and the plane vec(r). (hati - 2 hatj + hatk ) = 0.

Show that the lines : vec(r) = 3 hati + 2 hatj - 4 hatk + lambda (hati + 2 hatj + 2 hatk) and vec(r) = 5 hati - 2 hatj + mu (3 hati + 2 hatj + 6 hatk) (ii) vec(r) = (hati + hatj - hatk) + lambda (3 hati - hatj) . and vec(r) = (4 hati - hatk) + mu (2 hati + 3 hatk) are intersecting. Hence, find their point of intersection.

If vec(A) = 3 hati +2hatj and vec(B) = hati - 2hatj +3hatk , find the magnitudes of vec(A) +vec(B) and vec(A) - vec(B) .

Show that the lines vec r = hati + hatj + t(hati - hatj +3hatk) and vecr = 2hati + hatj -hatk + s(hati + 2hatj -hatk) intersect . Find the point of intersection.