Home
Class 10
MATHS
" (Q."26)" If "acos theta-bsin theta=c,"...

" (Q."26)" If "acos theta-bsin theta=c," prove that "(asin theta+b cos theta)=+-sqrt(a^(2)+b^(2)-c^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If a cos theta-b sin theta=c; prove that a sin theta+b cos theta=+-sqrt(a^(2)+b^(2)-c^(2))

If a cos theta-b sin theta=c, show that a sin theta+b cos theta=+-sqrt(a^(2)+b^(2)-c^(2))

If a cos theta-b sin theta=c, show that a sin theta+b cos theta=+-sqrt(a^(2)+b^(2)+c^(2))

If a cos theta - b sin theta = c, show that a sin theta + b cos theta = pm sqrt(a^(2) + b^(2) - c^(2))

If a cos theta+b sin theta=c , show that asin theta-bcos theta=pm sqrt((a)^(2)+(b)^(2)-(c)^(2))

If a cos theta - b sin theta = c, prove that a sin theta + b cos theta = pm sqrt(a^(2) + b^(2) - c^(2)) .

If acos theta -bsin theta =c, then show that asine theta + bcos =pm sqrt (a^(2)+b^(2)-c^(2))

If acos theta-b sin theta=c , show that asin theta+b cos theta=+-sqrt(a^2+b^2-c^2dot)

If acos theta-b sin theta=c , show that asin theta+b cos theta=+-sqrt(a^2+b^2-c^2dot)

If a cos theta - b sin theta =c , then prove that a sin theta + b cos theta = +- sqrt(a^(2) + b^(2) - c^(2))