Home
Class 11
MATHS
lim(n rarr oo)sum(i=1)^(n)(i^(3))/(i^(4)...

lim_(n rarr oo)sum_(i=1)^(n)(i^(3))/(i^(4)+n^(4))

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following define integrals as limit of sums : lim_(n rarroo) sum_(i=1)^(n) (i^(3))/(i^(4)+n^(4))

Which of the following is the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(3))/(r^(4)+n^(4))?

Evaluate the limit . lim_(n to 00) sum_(i=1)^(n) (i^(3))/(i^(4)+n^(4))

Evaluate the following define integrals as limit of sums : lim_(n rarr oo) sum_(i=1)^(n) (i)/(n^(2)+i^(2))

lim_(n rarr oo)sum_(i=1)^(n)(5)/(n^(3))(i-1)^(2) equals

If A=[a_(ij)]_(n xx n,) where a_(ij)=i^(100)+j^(100) then lim_(n rarr oo)((sum_(i=1)^(n)a_(ij))/(n^(101))) equals

lim_(n to oo) sum_(r=1)^(n) ((r^(3))/(r^(4) + n^(4))) equals to-

Using sandwitch theorem find the value of lim_(n rarr oo)sum_(i=1)^(n)(1)/(nCi)

alpha=lim_(n rarr oo)sum_(i=1)^(n)sum_(j=1)^(i)(j)/(n^(3)), then [(1)/(alpha)-1] is

The value of lim_(n rarr oo)sum_(i=1)^(n)(i)/(n^2)sin((pi i^(2))/(n^(2))) is equal to