Home
Class 11
MATHS
If f(x)=(t+3x-x^2)/(x-4), where t is a p...

If `f(x)=(t+3x-x^2)/(x-4),` where `t` is a parameter that has minimum and maximum, then the range of values of `t` is `(0,4)` (b) `(0,oo)` `(-oo,4)` (d) `(4,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(t+3x-x^(2))/(x-4) , where t is a parameter that has a minimum and maximum , then the range of values of t is

If f(x)=(t+3x-x^2)/(x-4), where t is a parameter that has minimum and maximum, then the range of values of t is (a) (0,4) (b) (0,oo) (c) (-oo,4) (d) (4,oo)

If f(x)=(t+3x-x^2)/(x-4), where t is a parameter that has minimum and maximum, then the range of values of t is (a) (0,4) (b) (0,oo) (c) (-oo,4) (d) (4,oo)

If f(x)=(t+3x-x^2)/(x-4), where t is a parameter that has minimum and maximum, then the range of values of t is (a) (0,4) (b) (0,oo) (c) (-oo,-11) (d) (4,oo)

If f(x) = (t + 3x - x^(2))/(x - 4) , where t is a parameter for which f(x) has a minimum and maximum, then the range of values of t is a)(0, 4) b) (0, oo) c) (-oo, 4) d) (4, oo)

If the function f(x)=(t+3x-x^(2))/(x-4), where is a parameter, has a minimum and a maximum, then the greatest value of t is ….. .

For x^2-(a+3)|x|-4=0 to have real solutions, the range of a is a) (-oo,-7]uu[1,oo) b) (-3,oo) c) (-oo,-7] d) [1,oo)

For x^2-(a+3)|x|+4=0 to have real solutions, the range of a is a. (-oo,-7]uu[1,oo) b. (-3,oo) c. (-oo,-7) d. [1,oo)

For x^2-(a+3)|x|+4=0 to have real solutions, the range of a is a. (-oo,-7]uu[1,oo) b. (-3,oo) c. (-oo,-7) d. [1,oo)

The range of the function f(x)=|x-1| is A. (-oo,0) B. [0,oo) C. (0,oo) D. R