Home
Class 12
MATHS
" Using mathematical induction prove tha...

" Using mathematical induction prove that "(d)/(dx)(x^(n))=nx^(n-1)" for all positive "

Promotional Banner

Similar Questions

Explore conceptually related problems

Using mathematical induction prove that (d)/(dx) (x^(n))= n x^(n-1) for all positive integers n.

Using mathematical induction prove that d/(dx)(x^n)=n x^(n-1) for all positive integers n.

Using mathematical induction prove that d/(d x)(x^n)=n x^(n-1) for all positive integers n .

Using mathematical induction prove that : d/(dx)(x^n)=n x^(n-1) for all n in NN .

Using mathematical induction prove that d(x^n)/dx = nx^(n-1) for all positive integers n.

Using mathematical induction prove that : (d)/(dx)(x^(n))=nx^(n-1)f or backslash all n in N

(d)/(dx)(alpha x^(n))=

Using the principle of mathematical induction prove that (1+x)^(n)>=(1+nx) for all n in N, where x>-1

prove that d/dx(x^x)=x^x(1+log_ex)

Using mathematical induction prove that 10^(2n-1)+1 is divisible by 11 for all n in N