Home
Class 10
MATHS
If a ne b ne c, "prove that" (a, a^(2)),...

If `a ne b ne c, "prove that" (a, a^(2)), (b, b^(2)), (0, 0)` will not be collinear.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a ne b ne c , prove that (a, a^2), (b, b^2), (c, c^2) can never be collinear.

If a ne b ne 0, prove that points (a, a^(2)), (b, b^(2)), and (0, 0) can never be collinear.

Find the condition for the points (a,0),(h,k) and (0,b) when ne 0 to be collinear.

If alpha, beta are solutions of a cos theta + b sin theta = c where a, b, c in R and a^(2) + b^(2) gt 0, cos alpha ne cos beta, sin alpha ne sin beta then prove that cos alpha cos beta = (c^(2) - b^(2))/(a^(2) + b^(2))

If a ne b ne 0 and a^(x)=b^(x) then x = ?

If alpha, beta are solutions of a cos theta + b sin theta = c where a, b, c in R and a^(2) + b^(2) gt 0, cos alpha ne cos beta, sin alpha ne sin beta then prove that sin alpha sin beta = (c^(2)-a^(2))/(a^(2) + b^(2))

The points (-a , -b) , ( a^(2) , ab) , (a , b) , ( 0 ,0) ,a ne 0 , b ne 0 are always