Home
Class 10
MATHS
Prove that sin^(6)theta+cos^(6)theta=1-3...

Prove that `sin^(6)theta+cos^(6)theta=1-3sin^(2)theta.cos^(2)theta.`

Promotional Banner

Topper's Solved these Questions

  • GEOMETRY MARCH 2015

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise Solve any three sub-questions:|7 Videos
  • GEOMETRY JULY 2017

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise Solve any two sub-questions:|5 Videos
  • GEOMETRY MARCH 2018

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise Attempt any two sub-questions from the following :|6 Videos

Similar Questions

Explore conceptually related problems

sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1

Prove that cos^(6)theta+sin^(6)theta=1-3sin^(2)theta cos^(2)theta

Prove that sin^(6)theta+cos^(6)theta=1-(3)/(4)sin^(2)2 theta

Prove that: sin^(6) theta + cos^(6) theta =1 - 3 sin^(2) theta cos^(2) theta

Prove : 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0 .

int(sin^(6)theta+cos^(6)theta)/(sin^(2)theta cos^(2)theta)d theta=

If s int h eta+sin^(2)theta1=1, then prove that cos^(12)theta+3cos^(8)theta+cos^(6)theta-1=0 Given that si ln theta=1-sin^(2)theta=1-sin^(2)theta=cos^(2)theta

Prove the following identities: 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1(sin^(8)theta-cos^(8)theta)=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)theta cos^(2)theta)

The value of the expression sin^(6)theta+cos^(6)theta+3sin^(2)theta*cos^(2)theta equals

The value for 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1 is