Home
Class 12
MATHS
If S1,S2,.......Sp are the sum of n term...

If `S_1`,`S_2`,.......`S_p` are the sum of n terms of an A.P.,whose first terms are 1,2,3,...... and common differences are 1,3,5,7.....Show that `S_1`+`S_2`+.......+`S_p`=`[np]/2[np+1]`

Text Solution

Verified by Experts

`therefore 1,2,3,"..."p` are in AP.
Then,`2.1,2.2,2.3,"…",2p` are also in AP. `" " ".....(i)"`
`" " ["multiplying 2 to each term"]`
and `1,3,5,"…",(2p-1)` are in AP.
Then, `(n-1)*1,(n-1)*3,(n-1)*5,"....",(n-1)(2p-1)` are also in AP. `" " " ""....(ii)"`
`" " " " " [multiplying (n-1) to each term ]"`
From Eqs.(i) and (ii),we get
`2*1+(n-1)*1,2*2+(n-1)*3,2*3+(n-1)*5,"....",2p+(n-1)(2p-1)` are also in AP. `" " " " "....(iii)"`
`" " [" adding corresponding terms of Eqs.(i)and (ii)"]`
From Eq. (iii),
`(n)/(2){2*1+(n-1)*1},(n)/(2){2*2+(n-1)*3},(n)/(2){2*3+(n-1)*5},"...,"`
`(n)/(2){2p+(n-1)(2p-1)} " are also in AP"`
`" " " "["multiplying (n)/(2) to each term"]`
`i.e.S_(1),S_(2),S_(3),"...",S_(p)` are in AP.
`therefore S_(1)+S_(2)+S_(3)+"..."S_(p)=(p)/(2){S_(1)+S_(p)}`
`=(p)/(2){(n)/(2)[2*1+(n-1)*1]+(n)/(2)[2*p+(n-1)(2p-1)]}`
`=(np)/(2){2+(n-1)+2p+(n-1)(2p-1)}`
`=(np)/(4)(2np+2)=(1)/(2)np(np+1)`
Aliter
Here, `S_(1)=1+2+3+"..." "upto n terms" =(n(n+1))/(2),etc*`
`S_(2)=2+5+8+"..." "upto n terms" =(n)/(2)[2*2+(n-1)3]`
`=(n(3n+1))/(2)`
Similarly, `S_(3)=3+8+13+"..." "upto n terms" =(n(5n+1))/(2),etc`.
Now, `S_(1)+S_(2)+S_(3)+"..."S_(p)`
`=(n(n+1))/(2)+(n(3n+1))/(2)+(n(5n+1))/(2)+"..." "upto p terms"` lt brgt `=(n)/(2)[(n+3n +5n+"..." "upto p terms")+ (1+1+1+"...""upto p terms)"]`
`=(n)/(2)[(p)/(2)(2n+(p-1)2n)+p]`
`=(np)/(2)[n+n(p-1)+1]= (1)/(2)np(np+1)`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise For Session 2|11 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

If S_(1),S_(2),......,S_(p) are the sums of n terms of an A.P

If S_(1),S_(2),S_(3),...S_(m) are the sums of n terms of m A.P.'s whose first terms are 1,2,3,...,m and common differences are 1,3,5,...,(2m-1) respectively.Show that S_(1)+S_(2),...+S_(m)=(mn)/(2)(mn+1)

if S_1 , S_2 , S_3..........,S_q are the sums of n terms of q ,AP's whose first terms are 1,2,3,...........q and common difference are 1,3,5,...........,(2q-1) respectively ,show that S_1 + S_2 + S_3..........+S_q=1/2nq(nq+1)

Show that sum S_(n) of n terms of an AP with first term a and common difference d is S_(n)=(n)/(2)(2a+(n-1)d)

For an A.P. if the first term is 8 and the common difference is 8, then S_(n) =

If S_1,S_2,S_3,...,S_n be the sums of first n terms of n G.P.'s whose first terms are each unity and the common ratios are 1, 2, 3,.....,n respectively, prove that S_1+S_2+2S_3+3S_4+.........+(n-1)S_n=1^n+2^n+3^n+....+n^n.

For the following A.P.'s write the first term and the common difference: -5,-1,3,7……

IF S_1,S_2,S_3 denote the sum n(gt1) terms of three sequences in A.P., whose first terms are unity and common differences are in H.P.prove that n=(2S_3S_1-S_1S_2-S_2S_3)/(S_1-2S_2+S_3)

ARIHANT MATHS-SEQUENCES AND SERIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If S1,S2,.......Sp are the sum of n terms of an A.P.,whose first terms...

    Text Solution

    |

  2. Let a, b, c be in A.P. and |a|lt1,|b|lt1|c|lt1. If x=1+a+a^(2)+ . . . ...

    Text Solution

    |

  3. If an=3/4-(3/4)^2+(3/4)^3+...(-1)^(n-1)(3/4)^n and bn=1-an, then find ...

    Text Solution

    |

  4. If a1, a2, a3, be terms of an A.P. if (a1+a2++ap)/(a1+a2++aq)=(p^2)/(...

    Text Solution

    |

  5. If a1, a2, a3,.....an are in H.P. and a1 a2+a2 a3+a3 a4+.......a(n-1...

    Text Solution

    |

  6. Let Vr denote the sum of the first r terms of an arithmetic progressio...

    Text Solution

    |

  7. Let Vr denote the sum of the first r terms of an arithmetic progressio...

    Text Solution

    |

  8. Let Vr denote the sum of the first r terms of an arithmetic progressio...

    Text Solution

    |

  9. Let A1 , G1, H1denote the arithmetic, geometric and harmonic means re...

    Text Solution

    |

  10. Let A1 , G1, H1denote the arithmetic, geometric and harmonic means re...

    Text Solution

    |

  11. Let A1 , G1, H1denote the arithmetic, geometric and harmonic means re...

    Text Solution

    |

  12. in a geometric progression consisting of positive terms, each term eq...

    Text Solution

    |

  13. Suppose four distinct positive numbers a(1),a(2),a(3),a(4) are in G.P....

    Text Solution

    |

  14. The first two terms of a geometric progression add up to 12. The su...

    Text Solution

    |

  15. If the sum of first n terms of an AP is cn^(2), then the sum of square...

    Text Solution

    |

  16. 1+2/3+6/(3^2)+10/(3^3)+14/(3^4)+...oo=

    Text Solution

    |

  17. Let Sk ,k=1,2, ,100 , denotes thesum of the infinite geometric series ...

    Text Solution

    |

  18. Le a1, a2, a3, ,a(11) be real numbers satisfying a2=15 , 27-2a2>0a n ...

    Text Solution

    |

  19. A person is to cout 4500 currency notes. Let a(n) denotes the number o...

    Text Solution

    |

  20. The minimum value of the sum of real numbers a^(-5),a^(-4),3a^(-3),1,a...

    Text Solution

    |

  21. A man saves Rs. 200 in each of the first three months of his service. ...

    Text Solution

    |