Home
Class 12
MATHS
If x=111"...."(20 digits),y=333"...."(10...

If `x=111"...."(20 digits),y=333"...."(10digits) and z=222".....2"(10 digits), then (x-y^(2))/(z)` equals.

A

`(1)/(2)`

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to evaluate the expression \((x - y^2) / z\) where: - \(x = 111...1\) (20 digits) - \(y = 333...3\) (10 digits) - \(z = 222...2\) (10 digits) ### Step 1: Express \(x\), \(y\), and \(z\) in mathematical form 1. **For \(x\)**: - \(x\) consists of 20 digits of 1. This can be expressed as: \[ x = \underbrace{111...1}_{20 \text{ times}} = \frac{10^{20} - 1}{9} \] 2. **For \(y\)**: - \(y\) consists of 10 digits of 3. This can be expressed as: \[ y = \underbrace{333...3}_{10 \text{ times}} = 3 \times \frac{10^{10} - 1}{9} \] 3. **For \(z\)**: - \(z\) consists of 10 digits of 2. This can be expressed as: \[ z = \underbrace{222...2}_{10 \text{ times}} = 2 \times \frac{10^{10} - 1}{9} \] ### Step 2: Calculate \(y^2\) Now we need to calculate \(y^2\): \[ y^2 = \left(3 \times \frac{10^{10} - 1}{9}\right)^2 = 9 \times \left(\frac{10^{10} - 1}{9}\right)^2 = \frac{(10^{10} - 1)^2}{9} \] ### Step 3: Substitute \(x\), \(y^2\), and \(z\) into the expression Now we substitute \(x\), \(y^2\), and \(z\) into the expression \((x - y^2) / z\): \[ \frac{x - y^2}{z} = \frac{\frac{10^{20} - 1}{9} - \frac{(10^{10} - 1)^2}{9}}{2 \times \frac{10^{10} - 1}{9}} \] ### Step 4: Simplify the expression 1. Combine the terms in the numerator: \[ = \frac{1}{9} \left(10^{20} - 1 - (10^{10} - 1)^2\right) \] 2. Expand \((10^{10} - 1)^2\): \[ (10^{10} - 1)^2 = 10^{20} - 2 \times 10^{10} + 1 \] 3. Substitute back into the expression: \[ = \frac{1}{9} \left(10^{20} - 1 - (10^{20} - 2 \times 10^{10} + 1)\right) \] 4. Simplify: \[ = \frac{1}{9} \left(10^{20} - 1 - 10^{20} + 2 \times 10^{10} - 1\right) = \frac{1}{9} \left(2 \times 10^{10} - 2\right) = \frac{2(10^{10} - 1)}{9} \] ### Step 5: Divide by \(z\) Now we divide by \(z\): \[ z = 2 \times \frac{10^{10} - 1}{9} \] Thus: \[ \frac{\frac{2(10^{10} - 1)}{9}}{2 \times \frac{10^{10} - 1}{9}} = 1 \] ### Final Answer The final result is: \[ \frac{x - y^2}{z} = 1 \]

To solve the problem step by step, we need to evaluate the expression \((x - y^2) / z\) where: - \(x = 111...1\) (20 digits) - \(y = 333...3\) (10 digits) - \(z = 222...2\) (10 digits) ### Step 1: Express \(x\), \(y\), and \(z\) in mathematical form ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise For Session 2|11 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

If x=111........1(20 digits ) y=333........3(10 digits) z=222..........2(10 digits) then x-z is

If x = 111 ……….. 1 (20 digits), y = 333….3 (10 digits) and z = 222…. 2 (10 digits), then what is (x − y^2) / (z) equal to ?

If x = 1111..... 20 times, y = 333 ......... 10 times, z = 2222 ....... 10 times. Find the value of (x-y^(2))/(z)

(x-y-z)^(2)-(x+y+z)^(2) is equal to

If x+y+z=0 , then [(y-z-x)//2]^(3)+[(z-x-y)//2]^(3)+[(x-y-z)//2]^(3) equals

If the six digit number 15 x 1y 2 is divisible by 44 then (x + y) is equal to :

If [(1,4),(2,0)] = [(x,y^(2)),(z,0)] y lt 0 then x-y+z is equal to

ARIHANT MATHS-SEQUENCES AND SERIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If x=111"...."(20 digits),y=333"...."(10digits) and z=222".....2"(10 d...

    Text Solution

    |

  2. Let a, b, c be in A.P. and |a|lt1,|b|lt1|c|lt1. If x=1+a+a^(2)+ . . . ...

    Text Solution

    |

  3. If an=3/4-(3/4)^2+(3/4)^3+...(-1)^(n-1)(3/4)^n and bn=1-an, then find ...

    Text Solution

    |

  4. If a1, a2, a3, be terms of an A.P. if (a1+a2++ap)/(a1+a2++aq)=(p^2)/(...

    Text Solution

    |

  5. If a1, a2, a3,.....an are in H.P. and a1 a2+a2 a3+a3 a4+.......a(n-1...

    Text Solution

    |

  6. Let Vr denote the sum of the first r terms of an arithmetic progressio...

    Text Solution

    |

  7. Let Vr denote the sum of the first r terms of an arithmetic progressio...

    Text Solution

    |

  8. Let Vr denote the sum of the first r terms of an arithmetic progressio...

    Text Solution

    |

  9. Let A1 , G1, H1denote the arithmetic, geometric and harmonic means re...

    Text Solution

    |

  10. Let A1 , G1, H1denote the arithmetic, geometric and harmonic means re...

    Text Solution

    |

  11. Let A1 , G1, H1denote the arithmetic, geometric and harmonic means re...

    Text Solution

    |

  12. in a geometric progression consisting of positive terms, each term eq...

    Text Solution

    |

  13. Suppose four distinct positive numbers a(1),a(2),a(3),a(4) are in G.P....

    Text Solution

    |

  14. The first two terms of a geometric progression add up to 12. The su...

    Text Solution

    |

  15. If the sum of first n terms of an AP is cn^(2), then the sum of square...

    Text Solution

    |

  16. 1+2/3+6/(3^2)+10/(3^3)+14/(3^4)+...oo=

    Text Solution

    |

  17. Let Sk ,k=1,2, ,100 , denotes thesum of the infinite geometric series ...

    Text Solution

    |

  18. Le a1, a2, a3, ,a(11) be real numbers satisfying a2=15 , 27-2a2>0a n ...

    Text Solution

    |

  19. A person is to cout 4500 currency notes. Let a(n) denotes the number o...

    Text Solution

    |

  20. The minimum value of the sum of real numbers a^(-5),a^(-4),3a^(-3),1,a...

    Text Solution

    |

  21. A man saves Rs. 200 in each of the first three months of his service. ...

    Text Solution

    |