Home
Class 12
MATHS
If |a|lt1|b|lt1and|x|lt1 then the soluti...

If `|a|lt1|b|lt1and|x|lt1` then the solution of `sin^(-1)((2a)/(1+a^(2)))-scos^(-1)(1-b^(2))/(1+b^(2))=tan^(-1)(2x)/(1-x^(2))` is

A

`(1)/((1-a)(1-b))`

B

`(1)/((1-a)(1-ab))`

C

`(1)/((1-b)(1-ab))`

D

`(1)/((1-a)(1-b)(1-ab))`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise For Session 4|10 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise For Session 5|8 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise For Session 2|11 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

If |a|lt1| b|lt1and|x|lt1 then the solution of sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=tan^(-1)((2x)/(1-x^(2))) is

If sin^(-1)((2a)/(1+a^(2)))+sin^(-1)((2b)/(1+b^(2)))=2tan^(-1)x

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1

Solve for x : tan^(-1)(2x)/(1-x^(2))+cot^(-1)(1-x^(2))/(2x))=pi/3, -1 lt x lt 1 .

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

Prove that tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-y^(2))/(1+y^(2)))}=(x+y)/(1-xy) , where |x| lt 1,y gt 0 and xy lt 1 .

Lt_(x rarr(1)/(sqrt(2)))(x-cos(sin^(-1)x))/(1-tan(sin^(-1)x))=

Prove that : 2sin^(-1). ((2x )/(1+x^(2))), -1 le x lt 1

If 1 lt x lt 1 then tan^(-1) (2x)/(1-x^(2)) equals