Home
Class 12
MATHS
Let Sn=1+1/2+1/3+1/4+......+1/(2^n-1). T...

Let `S_n=1+1/2+1/3+1/4+......+1/(2^n-1).` Then

A

`a(100)lt100`

B

`a(100)gt100`

C

`a(200)gt100`

D

`a(200)lt100`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`:.a(n)=1+(1)/(2)+(1)/(3)+(1)/(4)"......"+(1)/(2^(n)-1)`
`=1+((1)/(2)+(1)/(3))+((1)/(4)+(1)/(5)+(1)/(6)+(1)/(7))+((1)/(8)+"......"+(1)/(15))+"......"+(1)/(2^(n)-1)`
`=1+((1)/(2)+(1)/(2^(2)-1))+((1)/2^(2)+(1)/(5)+(1)/(6)+(1)/(2^(3)-1))+"......"+(1)/(2^(n)-1)`
`:. a(n)lt1+1+"....."+` n terms
`implies a(n)ltn`
`implies a(100)lt100`
Also, `a(n)=1+(1)/(2)+((1)/(3)+(1)/(4))+((1)/(5)+(1)/(6)+(1)/(7)+(1)/(8))+"......"+(1)/(2^(n)-1)`
`=1+(1)/(2)+((1)/(2^(1)+1)+(1)/(2^(2)))+((1)/(2^(2)+1)+(1)/(6)+(1)/(7)+(1)/(2^(3)))+"......"+((1)/(2^(n-1)+1)+"......"+(1)/(2^(n)))-(1)/(2^(n))`
`a(n)gt1+(1)/(2)+(2)/(4)+(4)/(8)+"......."+(2^(n-1))/(2^(n))-(1)/(2^(n))`
`a(n)gt(1-(1)/(2^(n)))+(n)/(2)" " implies a(n)gt(n)/(2)`
`:.a(200)gt100`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|24 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

For a positive integer n , let a(n) = 1+ 1/2 + 1/3 +…+ 1/(2^(n)-1) : Then

Let S_n=1/1^2 + 1/2^2 + 1/3^2 +….. + 1/n^2 and T_n=2 -1/n , then :

Let H_(n)=1+(1)/(2)+(1)/(3)+ . . . . .+(1)/(n) , then the sum to n terms of the series (1^(2))/(1^(3))+(1^(2))/(1^(3))+(2^(2))/(2^(3))+(1^(2)+2^(2)+3^(2))/(1^(3)+2^(3)+3^(3))+ . . . , is

L 1 n → ∞ 1 + 1 2 + 1 4 + ... ... + 1 2 n 1 + 1 3 + 1 9 + ... . . + 1 3 n

Let S_(n)=1+(1)/(2)+(1)/(3)+….+(1)/(n) Show that ns_(n)=n+((n-1)/(1)+(n-2)/(2)+………+(2)/(n-2)+(1)/(n-1)) .

Let S_n = 1 (n - 1) + 2. (n -2) + 3. (n - 3) +…+ (n -1).1, n ge 4. The sum sum_(n = 4)^oo ((2S_n)/(n!) - 1/((n - 2)!)) is equal to :

Let S_n = 1 (n - 1) + 2. (n -2) + 3. (n - 3) +…+ (n -1).1, n ge 4. The sum sum_(n = 4)^oo ((2S_n)/(n!) - 1/((n - 2)!)) is equal to :

Let S_(n)=1+(1)/(2)+(1)/(3)+….+(1)/(n) Show that s_(n)=n-((1)/(2)+(2)/(3))+…….+(n-1)/(n)) .