Home
Class 12
MATHS
let 0ltphiltpi/2, x=sum(n=0)^oocos^(2n)p...

let `0ltphiltpi/2`, `x=sum_(n=0)^oocos^(2n)phi`, `y=sum_(n=0)^oosin^(2n)phi` and `z=sum_(n=0)^oocos^(2n)phisin^(2n)phi`

A

`xyz=xz+y`

B

`xyz=xy+z`

C

`xyz=x+y+z`

D

`xyz=yz+x`

Text Solution

Verified by Experts

The correct Answer is:
B, C

`:. 0ltphilt(pi)/(2)`
`:.0sinphi lt1` and `0ltcosphilt1`
`:.x=sum_(n=0)^(oo)cos^(2n) phi=1+cos^(2)phi+cos^(4)phi+"....."+oo`
`=(1)/(1-cos^(2)phi)=(1)/(sin^(2)phi)`
or `sin^(2)phi=(1)/(x)" " "…..(i)"`
and `y=sum_(n=0)^(oo)sin^(2n) phi=1+sin^(2)phi+sin^(4)phi+"....."+oo`
`=(1)/(1-sin^(2)phi)=(1)/(cos^(2)phi)`
or `cos^(2)phi=(1)/(y)" " ".....(ii)"`
From Eqs. (i) and (ii),
`sin^(2)phi+cos^(2)phi=(1)/(x)+(1)/(y)`
`1=(1)/(x)+(1)/(y)`
`:.xy=x+y" " "..........(iii)"`
and `z=sum_(n=0)^(oo)cos^(2n) phisin^(2)phi`
`=1+cos^(2)phisin^(2)phi+cos^(4)phisin^(4)phi+"......."`
`(1)/(1-sin^(2)phicos^(2)phi)=(1)/(1-(1)/(xy))[" from Eqs. (i)and (ii) "]`
`implies z=(xy)/(xy-1)`
`implies xyz=+xy`
and `xyz=z+x+y" " ["from Eq.(iii) "]`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|24 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

let 0

If 0 lt theta, phi lt (pi)/(2), x = sum_(n=0)^(oo)cos^(2n)theta, y=sum_(n=0)^(oo)sin^(2n)phi and z=sum_(n=0)^(oo)cos^(2n)theta*sin^(2n)phi then :

If 0

If =sum_(n=0)^(oo)cos^(2n)theta,quad y=sum_(n=0)^(oo)sin^(2n)phi,z=sum_(n=0)^(oo)cos^(2n)theta sin^(2n)phi, where 0

If x= sum_(n=0)^oo (Costheta)^(2n) , y= sum_(n=0)^oo (Sinphi)^(2n) , z= sum_(n=0)^oo (Cosphi)^(2n). (Sintheta)^(2n) Then which of the following is true ??

If x=sum_(n=0)^(oo) a^(n),y=sum_(n=0)^(oo)b^(n),z=sum_(n=0)^(oo)(ab)^(n) , where a,blt1 , then

If a=sum_(n=0)^(oo)x^(n),b=sum_(n=0)^(oo)y^(n),c=sum_(n=0)^(oo)(xy)^(n) where |x|,|y|<1 then