Home
Class 12
MATHS
Let S(x)=1+x-x^(2)-x^(3)+x^(4)+x^(5)-x^(...

Let `S(x)=1+x-x^(2)-x^(3)+x^(4)+x^(5)-x^(6)-x^(7)+"........+"oo`, where `0ltxlt1`. If `S(x)=(sqrt(2)+1)/(2)`, then the value of `(x+1)^(2)` is

Text Solution

Verified by Experts

`S(x)=1+x-x^(2)-x^(3)+x^(4)+x^(5)-x^(6)-x^(7)+"....."+oo`
where `x in(0,1)`
`S(x)=(1+x)-x^(2)(1+x)+x^(4)+(1+x)-x^(6)(1+x)+"....."+oo`
`impliesS(x)=(1+x)[1-x^(2)+x^(4)-x^(6)+"....."+oo]`
`impliesS(x)=(1+x)((1)/(1+x^(2)))" " [:.S_(oo)=(a)/(1-r) " for "GP]`
According to the question, `S(x)=(sqrt(2)+1)/(2)`
So, `(1+x)/(1+x^(2))=(sqrt(2)+1)/(2)`
`implies=2+2x=(sqrt(2)+1)x^(2)+sqrt(2)+1`
`implies(sqrt(2)+1)x^(2)-2x-2+sqrt(2)+1=0`
`implies(sqrt(2)+1)x^(2)-2x+sqrt(2)-1=0`
`implies(sqrt(2)+1)x^(2)-2x+(1)/(sqrt(2)+1)=0`
`implies[(sqrt(2)+1)x]^(2)-2(sqrt(2)+1)x+1=0`
`implies[(sqrt(2)+1)x-1]^(2)=0`
`implies x=(1)/(sqrt(2)+1)" " ["repeated "]`
So, ` x=sqrt(2)-1`
`:. (x+1)^(2)=2`.
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|3 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Matching Type Questions|1 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|24 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

If cos (x-y)=(sqrt3)/2 and sin(x+y)=1/2 , then the value of x(0ltxlt90) is

If x-(1)/(x)=1 , then the value of (x^(4)-(1)/(x^(2)))/(3x^(2)+5x-3) is

If x=(1)/(2+sqrt(3)) of ,find the value 2x^(3)-7x^(2)-2x+1

If x= (1)/(sqrt2) + (1)/(2) + (1)/(2sqrt2) +… + oo , then find the value of x + (1)/(x) .

If x^(2)-5x+1=0 , then the value of (x^(4) + (1)/(x^(2))) div (x^(2)+1) is

If sqrt(3x - 7) + sqrt(3x + 7) = 4 + sqrt(2) then value of x + 1/x is

If x^2+1/x^2=7, then the value of x^3+1/x^3 Where x>0 is equal to:

Sum 1+3x+5x^(2)+7x^(3)+9x^(4)+...... to oo is (x<1)

If f (x)=((x+1)^(7)sqrt(1+x ^(2)))/((x^(2) -x+1)^(6)), then the value of f'(0) is equal to: