Home
Class 12
MATHS
If a,b,c, and c, are the roots of x^(2)-...

If a,b,c, and c, are the roots of `x^(2)-4x+3=0,x^(2)-8x+15=0` and `x^(2)-6x+5=0,`
`[{:(a^(2),+c^(2),a^(2)+b^(2)),(b^(2),+c^(2),a^(2)+c^(2)):}]+[{:(2ac,-2ab),(-2bc,-2ac):}]`

Text Solution

Verified by Experts

`therefore" " x^(2)-4x+3=0`
`rArr" "(x-1)(x-3)=0 " " therefore x=1,3`
`x^(2)-8x+15=0`
`rArr " " (x-3)(x-5)=0 " "therefore x=3,5`
and `x^(2)-6x+5=0`
`rArr" " (x-5)(x-1)=0 " " therefore x=5,1`
it is clear that a = 1,3 and c=5
Now, `[(a^(2)+c^(2),a^(2)+b^(2)),(b^(2)+c^(2),a^(2)+c^(2))]+[(2ac,-2ab),(-2bc,-2ac)]`
`[(a^(2)+c^(2)+2ac,a^(2)+b^(2)-2ab),(b^(2)+c^(2)-2bc,a^(2)+c^(2)-2ac)]+[(2ac,-2ab),(-2bc,-2ac)]`
`[((1+5)^(2),(1-3)^(2)),((3-5)^(2),(1-5)^(2))]=[(36,4),(4,16)]`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are the roots of the equation x^(3)-3x^(2)+3x+7=0, then the value of det[[2bc-a^(2),c^(2),b^(2)c^(2),2ac-b^(2),a^(2)b^(2),a^(2),2ab-c^(2)]] is

If a,b and c are the roots of the equation x^(3)+2x^(2)+1=0, find det[[a,b,cb,c,ac,a,b]]

If a, b, c are non zero complex numbers satisfying a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2),ab,ac),(ab,c^(2) + a^(2),bc),(ac,bc,a^(2) + b^(2))| = k a^(2) b^(2) c^(2) , then k is equal to

compute the following : (i) [{:(a,b),(-b,a):}]+[{:(a,b),(b,a):}] (ii) [{:(a^(2)+b^(2),b^(2)+c^(2)),(a^(2)+c^(2),a^(2)+b^(2)):}]+[{:(2ab,2bc),(-2ac,-2ab):}] (iii)[{:(-1,4,-6),(8,5,16),(2,8,5):}]+[{:(12,7,6),(8,0,5),(3,2,4):}] (iv) [{:(cos^(2)x, sin^(2)x),(sin^(2)x,cos^(2)x):}]+[{:("sin"^(2),cos^(2)x),(cos^(2) x , sin^(2)x):}]

If a,b,c in Q, then roots of the equation (b+c-2a)x^(2)+(c+a-2b)x+(a+b-2c)=0 are

a,b,c are rational.Then the roots of (a+b+c)x^(2)2(a+c)x+(a-b+c)=0 are.