Home
Class 12
MATHS
If A = [(0,-tan(alpha//2)),(tan(alpha//2...

If `A = [(0,-tan(alpha//2)),(tan(alpha//2),0)]` and `I` is a `2xx2` unit matrix, prove that `I+A=(I-A)[(cosalpha,-sinalpha),(sinalpha,cosalpha)]`

Text Solution

AI Generated Solution

To prove that \( I + A = (I - A) \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \), where \( A = \begin{pmatrix} 0 & -\tan(\alpha/2) \\ \tan(\alpha/2) & 0 \end{pmatrix} \) and \( I \) is the \( 2 \times 2 \) identity matrix, we will follow these steps: ### Step 1: Define the matrices Let: \[ A = \begin{pmatrix} 0 & -\tan(\alpha/2) \\ \tan(\alpha/2) & 0 \end{pmatrix} \] \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

Let A,=[[0,-tan((alpha)/(2))tan((alpha)/(2)),0]] and I be the identity matrix of order 2. show that I+A=(I-A)[cos alpha-sin alpha sin alpha cos alpha]

(1-cos alpha)/(sinalpha)=tan(alpha/2)

If A=[[0,-tan alpha2,tan alpha2,tan alpha]] and I is 2xx2 unit matrix,then (I-A)[[cos alpha,sin alphasin alpha,sin alphasin alpha,sin alpha]] is (a) these

Inverse of the matrix {:[(cosalpha,-sinalpha,0),(sinalpha,cosalpha ,0),(0,0,1)]:} is

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A'A=I.

Prove that (1-cosalpha)/sinalpha=tan(alpha/2)

If A_(alpha)=[(cosalpha,sinalpha),(-sinalpha,cosalpha)] then (A_(alpha))^2=?