Home
Class 12
MATHS
If A =[{:(0,1,0),(0,0,1),(p,q,r):}], sho...

If A `=[{:(0,1,0),(0,0,1),(p,q,r):}]`, show that ltbargt `A^(3)= pI+qA+rA^(2)`

Text Solution

Verified by Experts

we have, `A(2)=A.A`
`[(0,1,0),(0,0,1),(p,q,r)]xx[(0,1,0),(0,0,1),(p,q,r)]`
`[(0,0,1),(p,q,r),(pr,p+qr,q+r^(2))]`
`therefore (3)=A^(2)=[(0,1,1),(p,q,r),(pr,p+qr,q+r^(2))]xx[(0,1,0),(0,0,1),(p,q,r)]`
`=[(p,q,r),(pr,p+qr,q+r^(2)),(pq+r^(2)p,pr+q^(2)+qr^(2),p+2qr+r^(3))]" "therefore(i)`
and `pI+qA+rA^(2) =p[(1,0,0),(0,1,0),(0,0,1)]+q[(0,1,0),(0,0,1),(p,q,r)]+r[(0,0,1),(p,q,r),(pr,p+qr,q+r^(2))]`
`[(p+0+0,0+q+0,0+0+r),(0+0+pr,p+0+qr,0+q+r^(2)),(0+pq+pr^(2),0+q^(2)+pr+qr^(2),p+2qr+r^(3))]`
`[(p,q,r),(pr,p+qr,q+r^(3)),(pq+pr^(2),q^(2)+pr+qr^(2),p+2qr+r^(3))]" "therefore(ii)`
thus, from Eqs. (i) and (ii), we get `A = pI+qA+rA^(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let I = [{:(1, 0, 0),(0 ,1, 0),(0,0,1):}] and P = [{:(1, 0, 0),(0 ,-1, 0),(0,0,-2):}] . Then the matrix p^(3) + 2P^(2) is equal to

GIven the matrix A=[[0,1,00,0,11,2,-1]]. The constants p,q,r sich that A^(3)=pA^(2)+qA+rl, then

If P=[(lambda,0),(7,1)] and Q=[(4,0),(-7,1)] such that P^(2)=Q , then P^(3) is equal to

If A=((p,q),(0,1)) , then show that A^(8)=((p^(8),q((p^(8)-1)/(p-1))),(0,1))

If A=[(1,0),(0,3)] and B=[(2,0),(0,1)] then show AB =BA =[(2,0),(0,3)]

If A=[010001pqr] and I is the identity matrix of order 3, show that A^(3)=pI+qA+rA^(2)

If P=[(0,1,0),(0,2,1),(2,3,0)],Q=[(1,2),(3,0),(4,1)] , find PQ.

Let I=((1,0,0),(0,1,0),(0,0,1)) and P=((1,0,0),(0,-1,0),(0,0,-2)) . Then the matrix p^3+2P^2 is equal to